【題目】設首項為1的正項數(shù)列{an}的前n項和為Sn,數(shù)列的前n項和為Tn,且,其中p為常數(shù).
(1)求p的值;
(2)求證:數(shù)列{an}為等比數(shù)列;
(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.
【答案】(1)p=2;(2)見解析(3)見解析
【解析】
(1)取n=1時,由得p=0或2,計算排除p=0的情況得到答案.
(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡得到,得到證明.
(3)分別證明充分性和必要性,假設an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計算化簡得2x﹣2y﹣2=1,設k=x﹣(y﹣2),計算得到k=1,得到答案.
(1)n=1時,由得p=0或2,若p=0時,,
當n=2時,,解得a2=0或,
而an>0,所以p=0不符合題意,故p=2;
(2)當p=2時,①,則②,
②﹣①并化簡得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,
④﹣③得(n∈N*),
又因為,所以數(shù)列{an}是等比數(shù)列,且;
(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,
滿足,即an,2xan+1,2yan+2成等差數(shù)列;
必要性:假設an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,
所以,化簡得2x﹣2y﹣2=1,
顯然x>y﹣2,設k=x﹣(y﹣2),
因為x、y均為整數(shù),所以當k≥2時,2x﹣2y﹣2>1或2x﹣2y﹣2<1,
故當k=1,且當x=1,且y﹣2=0時上式成立,即證.
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C的中心在原點,左焦點,長軸為.
(1)求橢圓C的標準方程;
(2)過左焦點的直線交曲線C于A,B兩點,過右焦點的直線交曲線C于C,D兩點,凸四邊形ABCD為菱形,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知由樣本數(shù)據(jù)點集合,求得的回歸直線方程為,且,現(xiàn)發(fā)現(xiàn)兩個數(shù)據(jù)點和誤差較大,去除后重新求得的回歸直線l的斜率為1.2,則( )
A.變量x與y具有正相關關系B.去除后的回歸方程為
C.去除后y的估計值增加速度變快D.去除后相應于樣本點的殘差為0.05
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若,求曲線在點處的切線方程;
(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;
(Ⅲ)若數(shù)列的前項和, ,求證:數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個頂點為,焦點在軸上,中心在原點.若橢圓短軸的上頂點到直線的距離為.
(1)求橢圓的標準方程;
(2)若橢圓的下頂點為,設直線與橢圓相交于不同的兩點,,當時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產的某種產品被檢測出其中一項質量指標存在問題. 該企業(yè)為了檢查生產該產品的甲、乙兩條流水線的生產情況,隨機地從這兩條流水線上生產的大量產品中各抽取件產品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在內,則為合格品,否則為不合格品.表 1是甲流水線樣本的頻數(shù)分布表,如圖所示是乙流水線樣本的頻率分布直方圖.
表1 甲流水線樣本的頻數(shù)分布表
質量指標值 | 頻數(shù) |
(1)若將頻率視為概率,某個月內甲、乙兩條流水線均生產了萬件產品,則甲、乙兩條流水線分別生產出不合格品約多少件?
(2)在甲流水線抽取的樣本的不合格品中隨機抽取兩件,求兩件不合格品的質量指標值均偏大的概率;
(3)根據(jù)已知條件完成下面列聯(lián)表,并判斷在犯錯誤概率不超過的前提下能否認為“該企業(yè)生產的這種產品的質量指標值與甲、乙兩條流水線的選擇有關”?
甲生產線 | 乙生產線 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附:(其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某網絡平臺從購買該平臺某課程的客戶中,隨機抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學時數(shù),客戶性別等進行統(tǒng)計,整理得到如表:
學時數(shù) |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計男性客戶購買該課程學時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結果保留小數(shù)點后兩位);
(2)從這100位客戶中,對購買該課程學時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機抽取7人,再從這7人中隨機抽取2人,求這2人購買的學時數(shù)都不低于15的概率.
(3)將購買該課程達到25學時及以上者視為“十分愛好該課程者”,25學時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認為“十分愛好該課程者”與性別有關?
非十分愛好該課程者 | 十分愛好該課程者 | 合計 | |
男性 | |||
女性 | |||
合計 | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點與橢圓的右焦點相同.
(Ⅰ)求拋物線的方程;
(Ⅱ)若直線與曲線都只有一個公共點,記直線與拋物線的公共點為P,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com