【題目】設首項為1的正項數(shù)列{an}的前n項和為Sn,數(shù)列的前n項和為Tn,且,其中p為常數(shù).

1)求p的值;

2)求證:數(shù)列{an}為等比數(shù)列;

3)證明:數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中xy均為整數(shù)的充要條件是x1,且y2”

【答案】1p2;(2)見解析(3)見解析

【解析】

1)取n1時,由p02,計算排除p0的情況得到答案.

2,則,相減得到3an+14Sn+1Sn,再化簡得到,得到證明.

3)分別證明充分性和必要性,假設an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計算化簡得2x2y21,設kx﹣(y2),計算得到k1,得到答案.

1n1時,由p02,若p0時,

n2時,,解得a20

an0,所以p0不符合題意,故p2;

2)當p2時,①,則②,

②﹣①并化簡得3an+14Sn+1Sn③,則3an+24Sn+2Sn+1④,

④﹣③得nN*),

又因為,所以數(shù)列{an}是等比數(shù)列,且;

3)充分性:若x1,y2,由an,2xan+12yan+2依次為,,

滿足,即an2xan+1,2yan+2成等差數(shù)列;

必要性:假設an,2xan+12yan+2成等差數(shù)列,其中xy均為整數(shù),又,

所以,化簡得2x2y21

顯然xy2,設kx﹣(y2),

因為x、y均為整數(shù),所以當k≥2時,2x2y212x2y21,

故當k1,且當x1,且y20時上式成立,即證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C的中心在原點,左焦點,長軸為.

1)求橢圓C的標準方程;

2)過左焦點的直線交曲線CA,B兩點,過右焦點的直線交曲線CC,D兩點,凸四邊形ABCD為菱形,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知由樣本數(shù)據(jù)點集合,求得的回歸直線方程為,且,現(xiàn)發(fā)現(xiàn)兩個數(shù)據(jù)點誤差較大,去除后重新求得的回歸直線l的斜率為1.2,則(

A.變量xy具有正相關關系B.去除后的回歸方程為

C.去除后y的估計值增加速度變快D.去除后相應于樣本點的殘差為0.05

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若上恒成立,求實數(shù)的取值范圍;

(Ⅲ)若數(shù)列的前項和 ,求證:數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】fx)=etxt0),過點Pt,0)且平行于y軸的直線與曲線Cyfx)的交點為Q,曲線C過點Q的切線交x軸于點R,若S1,f1)),則PRS的面積的最小值是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個頂點為,焦點在軸上,中心在原點.若橢圓短軸的上頂點到直線的距離為.

1)求橢圓的標準方程;

2)若橢圓的下頂點為,設直線與橢圓相交于不同的兩點,當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產的某種產品被檢測出其中一項質量指標存在問題. 該企業(yè)為了檢查生產該產品的甲、乙兩條流水線的生產情況,隨機地從這兩條流水線上生產的大量產品中各抽取件產品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在內,則為合格品,否則為不合格品.表 1是甲流水線樣本的頻數(shù)分布表,如圖所示是乙流水線樣本的頻率分布直方圖.

表1 甲流水線樣本的頻數(shù)分布表

質量指標值

頻數(shù)

(1)若將頻率視為概率,某個月內甲、乙兩條流水線均生產了萬件產品,則甲、乙兩條流水線分別生產出不合格品約多少件?

(2)在甲流水線抽取的樣本的不合格品中隨機抽取兩件,求兩件不合格品的質量指標值均偏大的概率;

(3)根據(jù)已知條件完成下面列聯(lián)表,并判斷在犯錯誤概率不超過的前提下能否認為“該企業(yè)生產的這種產品的質量指標值與甲、乙兩條流水線的選擇有關”?

甲生產線

乙生產線

合計

合格品

不合格品

合計

附:(其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某網絡平臺從購買該平臺某課程的客戶中,隨機抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學時數(shù),客戶性別等進行統(tǒng)計,整理得到如表:

學時數(shù)

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根據(jù)上表估計男性客戶購買該課程學時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結果保留小數(shù)點后兩位);

(2)從這100位客戶中,對購買該課程學時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機抽取7人,再從這7人中隨機抽取2人,求這2人購買的學時數(shù)都不低于15的概率.

(3)將購買該課程達到25學時及以上者視為“十分愛好該課程者”,25學時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認為“十分愛好該課程者”與性別有關?

非十分愛好該課程者

十分愛好該課程者

合計

男性

女性

合計

100

附:,

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點與橢圓的右焦點相同.

(Ⅰ)求拋物線的方程;

(Ⅱ)若直線與曲線都只有一個公共點,記直線與拋物線的公共點為P,求點P的坐標.

查看答案和解析>>

同步練習冊答案