已知函數(shù),曲線在點(diǎn)處的切線是 
(Ⅰ)求,的值;
(Ⅱ)若上單調(diào)遞增,求的取值范圍

(Ⅰ) ;(Ⅱ) 

解析試題分析:(Ⅰ)先求出已知函數(shù)的導(dǎo)函數(shù),根據(jù)切線方程就可以知道曲線在的函數(shù)值和切線斜率,代入函數(shù)以及其導(dǎo)函數(shù)的解析式求解;(Ⅱ)先由(Ⅰ)得到函數(shù)及其導(dǎo)函數(shù)的只含有一個(gè)參數(shù)的解析式,然后根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系將問(wèn)題轉(zhuǎn)化為上的恒成立問(wèn)題,進(jìn)行分類討論解不等式即可
試題解析:解:(Ⅰ) 由已知得,                     2分
因?yàn)榍在點(diǎn)處的切線是,
所以,,即,                   6分
(Ⅱ)由(Ⅰ)知,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a9/4/169zu2.png" style="vertical-align:middle;" />在上單調(diào)遞增,所以上恒成立                  8分
當(dāng)時(shí),上單調(diào)遞增,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/99/0/oaeah1.png" style="vertical-align:middle;" />,所以上恒成立               10分
當(dāng)時(shí),要使得上恒成立,那么,
解得                                12分
綜上可知,                               14分
考點(diǎn):1、利用導(dǎo)數(shù)研究函數(shù)的切線方程;2、函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系3、分類討論思想

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若在區(qū)間上是減函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) .
(1)若 的極小值為1,求a的值.
(2)若對(duì)任意 ,都有 成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的導(dǎo)函數(shù)是二次函數(shù),當(dāng)時(shí),有極值,且極大值為2,.
(1)求函數(shù)的解析式;
(2)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若存在實(shí)數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=+ax-lnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a≥2時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對(duì)任意及任意∈[1,2],恒有成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),為正常數(shù).
(Ⅰ)若,且,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)若,且對(duì)任意都有,求的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)若時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)令是否存在實(shí)數(shù),當(dāng)是自然對(duì)數(shù)的底)時(shí),函數(shù)的最小值是3,
若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ)求證:,e是自然對(duì)數(shù)的底數(shù)).
提示:

查看答案和解析>>

同步練習(xí)冊(cè)答案