【題目】如圖,圓柱的軸截面是邊長(zhǎng)為2的正方形,點(diǎn)是圓弧上的一動(dòng)點(diǎn)(不與重合),點(diǎn)是圓弧的中點(diǎn),且點(diǎn)在平面的兩側(cè).
(1)證明:平面平面;
(2)設(shè)點(diǎn)在平面上的射影為點(diǎn),點(diǎn)分別是和的重心,當(dāng)三棱錐體積最大時(shí),回答下列問題.
(。┳C明:平面;
(ⅱ)求平面與平面所成二面角的正弦值.
【答案】(1)見解析(2)(。┮娊馕觯áⅲ
【解析】
(1)證明垂直平面內(nèi)的兩條相交直線,再利用面面垂直的判定定理證明即可;
(2)當(dāng)三棱錐體積最大時(shí),點(diǎn)為圓弧的中點(diǎn),所以點(diǎn)為圓弧的中點(diǎn),所以四邊形為正方形,且平面.(ⅰ)連接并延長(zhǎng)交于點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接,則,再由線面平行的判定定理證得結(jié)論;(ⅱ)由平面垂直,所以以為坐標(biāo)原點(diǎn),所在直線為軸建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,求兩向量夾角的余弦值,進(jìn)而得到二面角的正弦值.
(1)因?yàn)?/span>是軸截面,所以平面,所以,
又點(diǎn)是圓弧上的一動(dòng)點(diǎn)(不與重合),且為直徑,所以,
又平面平面,所以平面,而平面,故平面平面.
(2)當(dāng)三棱錐體積最大時(shí),點(diǎn)為圓弧的中點(diǎn),所以點(diǎn)為圓弧的中點(diǎn),所以四邊形為正方形,且平面.
(ⅰ)連接并延長(zhǎng)交于點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接,則,
因?yàn)?/span>分別為兩個(gè)三角形的重心,∴,
所以,又平面平面,所以平面.
(ⅱ)平面垂直,所以以為坐標(biāo)原點(diǎn),所在直線為軸建立空間直角坐標(biāo)系,如圖所示:
則,設(shè)平面的法向量,則即可取,
又平面的法向量,
所以,所以.
所以平面與平面所成二面角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)設(shè),若且有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B兩鎮(zhèn)分別位于東西湖岸MN的A處和湖中小島的B處,點(diǎn)C在A的正西方向1 km處,tan∠BAN=,∠BCN=,.現(xiàn)計(jì)劃鋪設(shè)一條電纜連通A,B兩鎮(zhèn),有兩種鋪設(shè)方案:①沿線段AB在水下鋪設(shè);②在湖岸MN上選一點(diǎn)P,先沿線段AP在地下鋪設(shè),再沿線段PB在水下鋪設(shè),預(yù)算地下、水下的電纜鋪設(shè)費(fèi)用分別為2萬(wàn)元km、4萬(wàn)元km.
(1)求A,B兩鎮(zhèn)間的距離;
(2)應(yīng)該如何鋪設(shè),使總鋪設(shè)費(fèi)用最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn)焦點(diǎn)在x軸上,橢圓C上一點(diǎn)A(2,﹣1)到兩焦點(diǎn)距離之和為8.若點(diǎn)B是橢圓C的上頂點(diǎn),點(diǎn)P,Q是橢圓C上異于點(diǎn)B的任意兩點(diǎn).
(1)求橢圓C的方程;
(2)若BP⊥BQ,且滿足32的點(diǎn)D在y軸上,求直線BP的方程;
(3)若直線BP與BQ的斜率乘積為常數(shù)λ(λ<0),試判斷直線PQ是否經(jīng)過定點(diǎn).若經(jīng)過定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo);若不經(jīng)過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為,焦距為2,拋物線的準(zhǔn)線經(jīng)過橢圓的左焦點(diǎn).
(1)求橢圓與拋物線的方程;
(2)直線經(jīng)過橢圓的上頂點(diǎn)且與拋物線交于,兩點(diǎn),直線,與拋物線分別交于點(diǎn)(異于點(diǎn)),(異于點(diǎn)),證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若方程有兩個(gè)不等實(shí)數(shù)根,,求實(shí)數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究不同性別在處理多任務(wù)時(shí)的表現(xiàn)差異,召集了男女志愿者各200名,要求他們同時(shí)完成多個(gè)任務(wù),包括解題、讀地圖、接電話.下圖表示了志愿者完成任務(wù)所需的時(shí)間分布.以下結(jié)論,對(duì)志愿者完成任務(wù)所需的時(shí)間分布圖表理解正確的是( )
①總體看女性處理多任務(wù)平均用時(shí)更短;
②所有女性處理多任務(wù)的能力都要優(yōu)于男性;
③男性的時(shí)間分布更接近正態(tài)分布;
④女性處理多任務(wù)的用時(shí)為正數(shù),男性處理多任務(wù)的用時(shí)為負(fù)數(shù).
A.①④B.②③C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣一中學(xué)的同學(xué)為了解本縣成年人的交通安全意識(shí)情況,利用假期進(jìn)行了一次全縣成年人安全知識(shí)抽樣調(diào)查.已知該縣成年人中的擁有駕駛證,先根據(jù)是否擁有駕駛證,用分層抽樣的方法抽取了100名成年人,然后對(duì)這100人進(jìn)行問卷調(diào)查,所得分?jǐn)?shù)的頻率分布直方圖如下圖所示.規(guī)定分?jǐn)?shù)在80以上(含80)的為“安全意識(shí)優(yōu)秀”.
擁有駕駛證 | 沒有駕駛證 | 合計(jì) | |
得分優(yōu)秀 | |||
得分不優(yōu)秀 | 25 | ||
合計(jì) | 100 |
(1)補(bǔ)全上面的列聯(lián)表,并判斷能否有超過的把握認(rèn)為“安全意識(shí)優(yōu)秀與是否擁有駕駛證”有關(guān)?
(2)若規(guī)定參加調(diào)查的100人中分?jǐn)?shù)在70以上(含70)的為“安全意識(shí)優(yōu)良”,從參加調(diào)查的100人中根據(jù)安全意識(shí)是否優(yōu)良,按分層抽樣的方法抽出5人,再?gòu)?人中隨機(jī)抽取3人,試求抽取的3人中恰有一人為“安全意識(shí)優(yōu)良”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,傾斜角為的直線l過點(diǎn),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的參數(shù)方程(為常數(shù))和曲線的直角坐標(biāo)方程;
(2)若直線與交于,兩點(diǎn),且,求傾斜角的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com