【題目】如圖,在四棱錐中,中點,側棱,底面為直角梯形,其中,,平面,、分別是線段、上的動點,且.

1)求證:平面;

2)當三棱錐的體積取最大值時,求到平面的距離;

3)在(2)的條件下求與平面所成角.

【答案】1)證明見解析;(2;(3.

【解析】

1)證明即可;

2)根據(jù)體積最值關系求出分別為的中點,建立空間直角坐標系,求出平面的法向量,利用公式求距離;

3)結合第(2)問的法向量利用公式即可求出線面角.

1)在中,中點,側棱,所以,

又因為平面,平面,所以,

是平面內兩條相交直線,

所以平面

2,即,

,所以是等腰直角三角形,,

平面,平面,所以,

連接

,則,由(1平面,

所以是點到平面的距離,

所以三棱錐的體積

,,當時,取得最大值

此時分別為的中點,

,所以四邊形是平行四邊形,

所以四邊形是正方形,,

為原點,方向為軸正方向建立空間直角坐標系,如圖所示:

,

設平面的法向量,則,

,則

所以點到平面的距離;

3)設與平面所成角為

,

,

與平面所成角為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某網絡營銷部門為了統(tǒng)計某市網友某日在某淘寶店的網購情況,隨機抽查了該市當天名網友的網購金額情況,得到如下統(tǒng)計表(如圖).

網購金額(單位:千元)

頻數(shù)

頻率

3

0.05

9

0.15

15

0.25

18

0.30

若網購金額超過千元的顧客定義為網購達人,網購金額不超過千元的顧客定義為非網購達人,已知非網購達人網購達人人數(shù)比恰好為

(Ⅰ)試確定的值,并補全頻率分布直方圖(如圖);

(Ⅱ)該營銷部門為了進一步了解這名網友的購物體驗,從非網購達人網購達人中用分層抽樣的方法抽取人,若需從這人中隨機選取人進行問卷調查.設為選取的人中網購達人的人數(shù),求的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,是邊長為4的正三角形, ,分別為的中點,且.

(1)證明:平面ABC;

(2)求二面角的余弦值;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機器生產商,對一次性購買兩臺機器的客戶推出兩種超過質保期后兩年內的延保維修方案:

方案一:交納延保金元,在延保的兩年內可免費維修次,超過次每次收取維修費元;

方案二:交納延保金元,在延保的兩年內可免費維修次,超過次每次收取維修費元.

某工廠準備一次性購買兩臺這種機器,現(xiàn)需決策在購買機器時應購買哪種延保方案,為此搜集并整理了臺這種機器超過質保期后延保兩年內維修的次數(shù),統(tǒng)計得下表:

維修次數(shù)

0

1

2

3

機器臺數(shù)

20

10

40

30

以上臺機器維修次數(shù)的頻率代替一臺機器維修次數(shù)發(fā)生的概率,記表示這兩臺機器超過質保期后延保兩年內共需維修的次數(shù).

的分布列;

以所需延保金與維修費用之和的期望值為決策依據(jù),該工廠選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,求不等式的解集;

2若關于x的不等式有實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中,邊,,令,,,過邊上一點(異于端點)引邊的垂線,垂足為,再由引邊的垂線,垂足為,又由引邊的垂線,垂足為,同樣的操作連續(xù)進行,得到點列、、,設);

1)求

2)結論是否正確?請說明理由;

3)若對于任意,不等式恒成立,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù),,,)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將)的圖象上的所有的點( 。

A. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

B. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>2倍,縱坐標不變

C. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

D. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>2倍,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某部門經統(tǒng)計,客戶對不同款型理財產品的最滿意程度百分比和對應的理財總銷售量(萬元)如下表(最滿意度百分比超高時總銷售量最高):

產品款型

A

B

C

D

E

F

G

H

I

J

最滿意度%

20

34

25

19

26

20

19

24

19

13

總銷量(萬元)

80

89

89

78

75

71

65

62

60

52

表示理財產品最滿意度的百分比,為該理財產品的總銷售量(萬元).這些數(shù)據(jù)的散點圖如圖所示.

(1)在款型理財產品的顧客滿意度調查資料中任取份;只有一份最滿意的,求含有最滿意客戶資料事件的概率.

(2)我們約定:相關系數(shù)的絕對值在以下是無線性相關,在以上(含)至是一般線性相關,在以上(含)是較強線性相關,若沒有達到較強線性相關則采取“末位”剔除制度(即總銷售量最少的那一款產品退出理財銷售);試求在剔除“末位”款型后的線性回歸方程(系數(shù)精確到).

數(shù)據(jù)參考計算值:

項目

21.9

72.1

288.9

37.16

452.1

17.00

附:回歸直線方程的斜率和截距的最小二乘法估計分別為:

線性相關系數(shù) .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐,是梯形,,,,

)證明:平面平面

)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案