【題目】已知函數(shù).
(1)當(dāng)a=2,求函數(shù)的極值;
(2)若函數(shù)有兩個零點,求實數(shù)a的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)代入a的值,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,結(jié)合函數(shù)的零點個數(shù)確定a的范圍即可.
(1)當(dāng)a=2時,,令,解得x=1.
列表:
x | 1 | ||
— | 0 | + | |
極小值 |
所以,當(dāng)x=1時,有極小值,沒有極大值
(2)①因為. 所以,.
當(dāng)時,,
所以在上單調(diào)遞增,只有一個零點,不合題意,
當(dāng)時,由得,由得,
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以在處取得極小值,即為最小值.
1°當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增,
只有一個零點,不合題意;
2°當(dāng)時,,故,最多有兩個零點.
注意到,令,
取,使得,下面先證明;
設(shè),令,解得.
列表
x | |||
— | 0 | + | |
極小值 |
所以,當(dāng),有極小值.
所以,故,即.
因此,根據(jù)零點存在性定理知,在上必存在一個零點,
又x=1也是的一個零點,則有兩個相異的零點,符合題意
3°當(dāng)時,,故,最多有兩個零點.
注意到,取,
則
,
因此,根據(jù)零點存在性定理知,在上必存在一個零點,
又x=1也是的一個零點,則有兩個相異的零點,符合題意.
綜上所述,實數(shù)a的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcos(θ+ )=1.以極點O為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C的參數(shù)方程為 (θ為參數(shù)).若直線l與圓C相切,求r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大型綜藝節(jié)目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學(xué)會盲擰也是很容易的.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗證這個結(jié)論,某興趣小組隨機抽取了50名魔方愛好者進行調(diào)查,得到的情況如下表所示:
喜歡盲擰 | 不喜歡盲擰 | 總計 | |
男 | 22 | ▲ | 30 |
女 | ▲ | 12 | ▲ |
總計 | ▲ | ▲ | 50 |
表1
并邀請這30名男生參加盲擰三階魔方比賽,其完成情況如下表所示:
成功完成時間(分鐘) | [0,10) | [10,20) | [20,30) | [30,40] |
人數(shù) | 10 | 10 | 5 | 5 |
表2
(1)將表1補充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認為是否喜歡盲擰與性別有關(guān)?
(2)根據(jù)表2中的數(shù)據(jù),求這30名男生成功完成盲擰的平均時間(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替);
(3)現(xiàn)從表2中成功完成時間在[0,10)內(nèi)的10名男生中任意抽取3人對他們的盲擰情況進行視頻記錄,記成功完成時間在[0,10)內(nèi)的甲、乙、丙3人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附參考公式及數(shù)據(jù):,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組為了研究人的腳的大小與身高的關(guān)系,隨機抽測了20位同學(xué),得到如下數(shù)據(jù):
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
身高(厘米) | 192 | 164 | 172 | 177 | 176 | 159 | 171 | 166 | 182 | 166 |
腳長(碼) | 48 | 38 | 40 | 43 | 44 | 37 | 40 | 39 | 46 | 39 |
序號 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
身高(厘米) | 169 | 178 | 167 | 174 | 168 | 179 | 165 | 170 | 162 | 170 |
腳長(碼) | 43 | 41 | 40 | 43 | 40 | 44 | 38 | 42 | 39 | 41 |
(Ⅰ)請根據(jù)“序號為5的倍數(shù)”的幾組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅱ)若“身高大于175厘米”的為“高個”,“身高小于等于175厘米”的為“非高個”;“腳長大于42碼”的為“大腳”,“腳長小于等于42碼”的為“非大腳”.請根據(jù)上表數(shù)據(jù)完成列聯(lián)表,并根據(jù)列聯(lián)表中數(shù)據(jù)說明能有多大的把握認為腳的大小與身高之間有關(guān)系.
附表及公式:,,.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
列聯(lián)表:
高個 | 非高個 | 總計 | |
大腳 | |||
非大腳 | |||
總計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于和,為棱上的點,,.
(1)若為棱的中點,求證://平面;
(2)當(dāng)時,求平面與平面所成的銳二面角的余弦值;
(3)在第(2)問條件下,設(shè)點是線段上的動點,與平面所成的角為,求當(dāng)取最大值時點的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于函數(shù)的判斷正確的是( )
①的解集是;②當(dāng)時有極小值,當(dāng)時有極大值;
③沒有最小值,也沒有最大值.
A. ①③ B. ①②③ C. ② D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù).當(dāng)x>0時,f(x)=x2﹣4x,則不等式f(x)>x 的解集用區(qū)間表示為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com