(本題滿分15分)已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù),使得函數(shù)有唯一的極值,且極值大于?若存在,,求的取值
范圍;若不存在,說(shuō)明理由;
(Ⅲ)如果對(duì),總有,則稱的凸
函數(shù),如果對(duì),總有,則稱的凹函數(shù).當(dāng)時(shí),利用定義分析的凹凸性,并加以證明。
解:(Ⅰ)遞增,遞減;
(Ⅱ);(Ⅲ)上為凸函數(shù).上為凹函數(shù).
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的 運(yùn)用,求解函數(shù)的單調(diào)性,和函數(shù)的極值問(wèn)題,以及函數(shù)的凸凹性的研究的綜合運(yùn)用。
(1)利用定義域和導(dǎo)數(shù)來(lái)求解函數(shù)的單調(diào)區(qū)間的問(wèn)題。
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232232024121010.png" style="vertical-align:middle;" />
顯然才有唯一的極值點(diǎn),利用這一點(diǎn)得到a的不等式,從而求解范圍。
(3)根據(jù)新的凸函數(shù)與凹函數(shù)的定義,借助于導(dǎo)數(shù)的思想來(lái)判定結(jié)論。
解:(Ⅰ)當(dāng)時(shí),             ………………2分
遞增,遞減                            ………………4分
(Ⅱ)
顯然才有唯一的極值點(diǎn),它滿足
                                     ………………6分
消去,得, 方程的正跟比1大
                                               ………………8分
                                             ………………9分
(Ⅲ)處取得最小值
上為凸函數(shù),上為凹函數(shù)          ………………11分
下證上為凸函數(shù):
不妨設(shè)
 ……13分

上遞減,

上為凸函數(shù).
同理上為凹函數(shù).                          ………………15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)處的切線斜率為零.
(Ⅰ)求的值;
(Ⅱ)求證:在定義域內(nèi)恒成立;
(Ⅲ) 若函數(shù)有最小值,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)時(shí)取得極值.
(1)求a、b的值;
(2)若對(duì)于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)連結(jié)成等腰直角三角形,直線是拋物線的一條切線。
(1)  求橢圓方程;
(2)  直線交橢圓于A、B兩點(diǎn),若點(diǎn)P滿足(O為坐標(biāo)原點(diǎn)), 判斷點(diǎn)P是否在橢圓上,并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

.若f(x)=x3+3ax2+3(a+2)x+1沒有極值,則a的取值范圍為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),,設(shè)函數(shù)
,且函數(shù)的零點(diǎn)均在區(qū)間內(nèi),則的最小值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分16分)
已知函數(shù)的導(dǎo)函數(shù)。
(1)若,不等式恒成立,求a的取值范圍;
(2)解關(guān)于x的方程;
(3)設(shè)函數(shù),求時(shí)的最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(本小題滿分12分)已知,函數(shù)
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)在下面哪個(gè)區(qū)間是增函數(shù)   (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案