【題目】在平面直角坐標(biāo)系xOy中,已知P是直線上的一個動點(diǎn),圓Q的方程為:設(shè)以線段PQ為直徑的圓E與圓Q交于C,D兩點(diǎn).

證明:PC,PD均與圓Q相切;

當(dāng)時,求點(diǎn)P的坐標(biāo);

求線段CD長度的最小值.

【答案】(1)見解析(2) (3)

【解析】

(1)根據(jù)題意,連接CQ、CD,分析易得PC⊥CQ,PD⊥DQ,又由C、D都在圓Q上,即可得證明;

(2)根據(jù)題意,設(shè)P(m,m+4),由直線與圓的位置關(guān)系可得|PQ|2=PC2+CQ2=63+9=72,由兩點(diǎn)間距離公式可得(m﹣4)2+(m+8)2=72,解可得m的值,即可得答案;

(3)根據(jù)題意,設(shè)PQ=t,求出PC的值,據(jù)此可得CD=2×=6,分析可得當(dāng)t取得最小值時,CD的值最小,進(jìn)而可得當(dāng)PQ與直線x﹣y+4=0垂直時,PQ最小,計算即可得答案.

證明:根據(jù)題意,連接CQ、CD

E是以線段PQ為直徑的圓,則,即,,

又由C、D都在圓Q上,

PC,PD均與圓Q相切;

根據(jù)題意,設(shè)

Q的方程為:,圓心,半徑,

當(dāng)時,,

則有,即

解可得:,

P的坐標(biāo)為;

根據(jù)題意,設(shè),則

,

分析可得:當(dāng)t取得最小值時,CD的值最小,

當(dāng)PQ與直線垂直時,PQ最小,且PQ的最小值為,

此時CD取得最小值,且其最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 通項公式為
(Ⅰ)計算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x﹣m|﹣1.
(1)若不等式f(x)≤2的解集為{x|﹣1≤x≤5},求實數(shù)m的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥t﹣2對一切實數(shù)x恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠ABC=60°,AC與BD相交于點(diǎn)O,AE⊥平面ABCD,CF∥AE,AB=2,CF=3.
(1)求證:BD⊥平面ACFE;
(2)當(dāng)直線FO與平面BED所成角的大小為45°時,求AE的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

當(dāng)時,求曲線在點(diǎn)處的切線方程;

當(dāng)時,若在區(qū)間上的最小值為,求a的取值范圍;

,,且恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1的棱長為1,點(diǎn)P是線段A1C1上的動點(diǎn),則四棱錐P﹣ABCD的外接球半徑R的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:(a>0,b>0)的短軸長為2 , 且離心率e=
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)F1、F2是橢圓的左、右焦點(diǎn),過F2的直線與橢圓相交于P、Q兩點(diǎn),求△F1PQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)的一個頂點(diǎn)為B(0,4),離心率e= ,直線l交橢圓于M,N兩點(diǎn).
(1)若直線l的方程為y=x﹣4,求弦MN的長;
(2)如果△BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線l方程的一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求經(jīng)過直線l1:x+3y-3=0,l2:x-y+1=0的交點(diǎn)且平行于直線2x+y-3=0的直線方程.

(2)求證:不論m取什么實數(shù),直線(2m-1)x+(m+3)y-(m-11)=0都經(jīng)過一個定點(diǎn),并求出這個定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案