【題目】已知函數(shù)是偶函數(shù), (其中).

(1)求函數(shù)的定義域;

(2)求的值;

(3)若函數(shù)的圖象有且只有一個(gè)交點(diǎn),求的取值范圍.

【答案】1 2 3

【解析】試題分析:1)根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)有解不等式即可求出函數(shù)的定義域;
2)函數(shù)是偶函數(shù),所以= ,即有由此可求出k的值;
3函數(shù)的圖象有且只有一個(gè)交點(diǎn),即方程上只有一解,,問(wèn)題轉(zhuǎn)化為關(guān)于t的方程(a-1t2-在(, 上只有一解,分三種情況進(jìn)行討論即可求得的取值范圍.

試題解析:

(1)∵,且

所以定義域?yàn)?/span>

(2)∵是偶函數(shù)

對(duì)任意恒成立

恒成立,

(3)∵函數(shù)的圖象有且只有一個(gè)交點(diǎn)

∴方程上只有一解

即方程上只有解

因而等價(jià)于關(guān)于的方程上只有一個(gè)解

①當(dāng)時(shí),解得,不合題意

②當(dāng)0a1時(shí),記ht=a﹣1t2at﹣1,

其圖象的對(duì)稱軸t=0,

∴函數(shù)ht在(0,+∞)上遞減,而h0=﹣1,

∴方程在(,+∞)無(wú)解;

③當(dāng)a1時(shí),記ht=a﹣1t2at﹣1,

其圖象的對(duì)稱軸t=0h0=﹣1,

所以,只需h)<0,即a﹣1a﹣10,此恒成立,

∴此時(shí)a的范圍為a1,

綜上所述,所求a的取值范圍為a1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接黨的“十九大”勝利召開(kāi)與響應(yīng)國(guó)家交給的“提速降費(fèi)”任務(wù),某市移動(dòng)公司欲提供新的資費(fèi)套餐(資費(fèi)包含手機(jī)月租費(fèi)、手機(jī)撥打電話費(fèi)與家庭寬帶上網(wǎng)費(fèi))。其中一組套餐變更如下:

原方案資費(fèi)

手機(jī)月租費(fèi)

手機(jī)撥打電話

家庭寬帶上網(wǎng)費(fèi)(50M)

18元/月

0.2元/分鐘

50元/月

新方案資費(fèi)

手機(jī)月租費(fèi)

手機(jī)撥打電話

家庭寬帶上網(wǎng)費(fèi)(50M)

58元/月

前100分鐘免費(fèi),

超過(guò)部分元/分鐘(>0.2

免費(fèi)

(1)客戶甲(只有一個(gè)手機(jī)號(hào)和一個(gè)家庭寬帶上網(wǎng)號(hào))欲從原方案改成新方案,設(shè)其每月手機(jī)通話時(shí)間為分鐘(),費(fèi)用原方案每月資費(fèi)-新方案每月資費(fèi),寫(xiě)出關(guān)于的函數(shù)關(guān)系式;

(2)經(jīng)過(guò)統(tǒng)計(jì),移動(dòng)公司發(fā)現(xiàn),選這組套餐的客戶平均月通話時(shí)間分鐘,為能起到降費(fèi)作用,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)定義在上且滿足下列兩個(gè)條件:

①對(duì)任意都有;

②當(dāng)時(shí),

1)求,并證明函數(shù)上是奇函數(shù);

2)驗(yàn)證函數(shù)是否滿足這些條件;

3)若,試求函數(shù)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與直線,其中為常數(shù).

1,求的值;

2若點(diǎn)上,直線過(guò)點(diǎn),且在兩坐標(biāo)軸上的截距之和為0,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:經(jīng)過(guò)定點(diǎn)P0(x0 , y0)的直線都可以用方程y﹣y0=k(x﹣x0)表示,命題q:直線xtan +y﹣7=0的傾斜角是 ,則下列命題是真命題的為( )
A.(p)∧q
B.p∧q
C.p∨(q)
D.(P)∧(q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓C的兩個(gè)焦點(diǎn)是F1、F2 , 過(guò)F1的直線與橢圓C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接2017年“雙11”,“雙12”購(gòu)物狂歡節(jié)的來(lái)臨,某青花瓷生產(chǎn)廠家計(jì)劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共100個(gè),生產(chǎn)一個(gè)湯碗需5分鐘,生產(chǎn)一個(gè)花瓶需7分鐘,生產(chǎn)一個(gè)茶杯需4分鐘,已知總生產(chǎn)時(shí)間不超過(guò)10小時(shí).若生產(chǎn)一個(gè)湯碗可獲利潤(rùn)5元,生產(chǎn)一個(gè)花瓶可獲利潤(rùn)6元,生產(chǎn)一個(gè)茶杯可獲利潤(rùn)3元.
(1)使用每天生產(chǎn)的湯碗個(gè)數(shù)x與花瓶個(gè)數(shù)y表示每天的利潤(rùn)ω(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】語(yǔ)句p:曲線x2﹣2mx+y2﹣4y+2m+7=0表示圓;語(yǔ)句q:曲線 + =1表示焦點(diǎn)在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案