【題目】某校高三有500名學(xué)生,在一次考試的英語成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:
(Ⅰ)如果成績大于135的為特別優(yōu)秀,則本次考試英語、數(shù)學(xué)特別優(yōu)秀的大約各多少人?
(Ⅱ)試問本次考試英語和數(shù)學(xué)的成績哪個較高,并說明理由.
(Ⅲ)如果英語和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望。
參考公式及數(shù)據(jù):
若,則,
,.
【答案】(1)英語、數(shù)學(xué)特別優(yōu)秀的大約各10,12; (2)英語的平均成績更高; (3)
【解析】
(1)先求出英語和數(shù)學(xué)特別優(yōu)秀的的概率,由此能求出英語和數(shù)學(xué)都特別優(yōu)秀的人數(shù);
(2)分別計(jì)算得到英語和數(shù)學(xué)的平均分,比較平均分的大小,可得到結(jié)論;
(3)由題意得的所有可能的值為,分別求出相應(yīng)的概率,由此得到的分布列,求解數(shù)學(xué)期望.
(1)英語成績服從正態(tài)分布,
∴英語成績特別優(yōu)秀的概率為
數(shù)學(xué)成績特別優(yōu)秀的概率為,
∴英語成績特別優(yōu)秀的同學(xué)有人,
數(shù)學(xué)成績特別優(yōu)秀的同學(xué)有人.
(2)英語的平均成績?yōu)?/span>100分,數(shù)學(xué)的平均成績?yōu)?/span>
因?yàn)?/span>,
所以英語的平均成績更高.
(3)英語和數(shù)學(xué)都特別優(yōu)秀的有6人,單科優(yōu)秀的有10人,可取得值有0,1,2,3,
; ;
;
故的分布列為:
0 | 1 | 2 | 3 | |
的數(shù)學(xué)期望為(人).
或:因服從超幾何分布,所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且,函數(shù)在點(diǎn)處的切線過點(diǎn) .
(1) 求滿足的關(guān)系式,并討論函數(shù)的單調(diào)區(qū)間;
(2)已知,若函數(shù)在 上有且只有一個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若曲線上點(diǎn)處的切線過點(diǎn),求函數(shù)的單調(diào)減區(qū)間;
(Ⅱ)若函數(shù)在上無零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曙光中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛我中華”的知識競賽,從參加考試的學(xué)生中抽出名學(xué)生,將其成績(均為整數(shù))分成六段,,,后畫出如下部分頻率分布直方圖,則第四小組的頻率為_______,從成績是和的學(xué)生中選兩人,他們在同一分?jǐn)?shù)段的概率_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將兩顆正方體型骰子投擲一次,則向上的點(diǎn)數(shù)之和是的概率為_____,向上的點(diǎn)數(shù)之和不小于的概率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
(1)求在區(qū)間上的值域;
(2)求在區(qū)間上的值域:
(3)已知,若對于任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從8名運(yùn)動員中選4人參加米接力賽,在下列條件下,各有多少種不同的排法?
(1)甲、乙兩人必須入選且跑中間兩棒;
(2)若甲、乙兩人只有一人被選且不能跑中間兩棒;
(3)若甲、乙兩人都被選且必須跑相鄰兩棒;
(4)甲不在第一棒.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,為邊的中點(diǎn).將△沿翻折,得到四棱錐.設(shè)線段的中點(diǎn)為,在翻折過程中,有下列三個命題:
① 總有平面;
② 三棱錐體積的最大值為;
③ 存在某個位置,使與所成的角為.
其中正確的命題是____.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在上不單調(diào),求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)在的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com