【題目】媒體為調(diào)查喜歡娛樂節(jié)目是否與性格外向有關(guān),隨機抽取了400名性格外向的和400名性格內(nèi)向的居民,抽查結(jié)果用等高條形圖表示如下圖:

(1)填寫完整如下列聯(lián)表;

(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.001的前提下認為喜歡娛樂節(jié)目與性格外向有關(guān)?

參考數(shù)據(jù)及公式:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)有等高條形圖可知,性格外向、性格的人中喜歡節(jié)目的人數(shù),可得的列聯(lián)表;

2)根據(jù)公式計算的值,與給出的臨界值比較,即可得出結(jié)論.

試題解析:

(1)由等高條形圖,性格外向的人中喜歡節(jié)目的有人,

性格內(nèi)向的人中喜歡節(jié)目的有人.

列聯(lián)表如下:

(2)的觀測值.

因為

所以能在犯錯誤的概率不超過0.001的前提下認為喜歡娛樂節(jié)目與性格外向有關(guān).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】將7名應屆師范大學畢業(yè)生分配到3所中學任教.

(1)4個人分到甲學校,2個人分到乙學校,1個人分到丙學校,有多少種不同的分配方案?

(2)一所學校去4個人,另一所學校去2個人,剩下的一個學校去1個人,有多少種不同的分配方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱臺中, 底面,四邊形為菱形, , .

(Ⅰ)若中點,求證: 平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點, , .

(Ⅰ)求橢圓的方程;

(Ⅱ)設為原點, 為橢圓上一點, 的中點為,直線與直線交于點,過,交直線于點,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計表:

(1)令,利用給出的參考數(shù)據(jù)求出關(guān)于的回歸方程.(,精確到0.1)

參考數(shù)據(jù):,

其中,

(2)對于某種殘留在蔬菜上的農(nóng)藥,當它的殘留量不高于20微克時對人體無害,為了放心食用該蔬菜,請估計至少需用用多少千克的清水清洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù)

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用秦九韶算法求多項式f(x)=x6-5x5+6x4+x2+0.3x+2當x=-2時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,( 為常數(shù))

(1)若處的切線方程為為常數(shù)),求的值;

(2)設函數(shù)的導函數(shù)為,若存在唯一的實數(shù),使得同時成立,求實數(shù)的取值范圍;

(3)令,若函數(shù)存在極值,且所有極值之和大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)寫出的普通方程和的直角坐標方程;

2)設點上,點上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次抽樣調(diào)查中測得樣本的6組數(shù)據(jù),得到一個變量關(guān)于的回歸方程模型,其對應的數(shù)值如下表:

2

3

4

5

6

7

(1)請用相關(guān)系數(shù)加以說明之間存在線性相關(guān)關(guān)系(當時,說明之間具有線性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預測當時,對應的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:

,,相關(guān)系數(shù)公式為:.

參考數(shù)據(jù):

,,.

查看答案和解析>>

同步練習冊答案