【題目】如圖所示,某街道居委會(huì)擬在地段的居民樓正南方向的空白地段上建一個(gè)活動(dòng)中心,其中米.活動(dòng)中心東西走向,與居民樓平行. 從東向西看活動(dòng)中心的截面圖的下部分是長(zhǎng)方形,上部分是以為直徑的半圓. 為了保證居民樓住戶的采光要求,活動(dòng)中心在與半圓相切的太陽(yáng)光線照射下落在居民樓上的影長(zhǎng)不超過(guò)米,其中該太陽(yáng)光線與水平線的夾角滿足.

1)若設(shè)計(jì)米,米,問(wèn)能否保證上述采光要求?

2)在保證上述采光要求的前提下,如何設(shè)計(jì)的長(zhǎng)度,可使得活動(dòng)中心的截面面積最大?(注:計(jì)算中3

【答案】米且

【解析】

試題分析:條件知研究直線與圓相切,所以建立坐標(biāo)系:以點(diǎn)A為坐標(biāo)原點(diǎn),AB所在直線為x軸,,確定圓的方程,求出切線方程,解出切線與直線交點(diǎn),最后判斷是否滿足不超過(guò)米這個(gè)條件同(1)建立坐標(biāo)系,設(shè)立圓的方程:圓心為,半徑為,求出切線方程,解出切線與直線交點(diǎn),根據(jù) 不超過(guò)米這個(gè)條件參數(shù)限制條件,最后根據(jù)活動(dòng)中心的截面面積關(guān)系式求最值:

試題解析:解:如圖所示,以點(diǎn)A為坐標(biāo)原點(diǎn),AB所在直線為x軸,建立平面直角坐標(biāo)系.

1)因?yàn)?/span>,,所以半圓的圓心為,

半徑.設(shè)太陽(yáng)光線所在直線方程為,

, ...............2

則由

解得(舍).

故太陽(yáng)光線所在直線方程為 ...............5

,得.

所以此時(shí)能保證上述采光要求. ...............7

2)設(shè)米,米,則半圓的圓心為,半徑為

方法一:設(shè)太陽(yáng)光線所在直線方程為,

,由,

解得(舍). ...............9

故太陽(yáng)光線所在直線方程為

,得,由,得. ...............11

所以

.

當(dāng)且僅當(dāng)時(shí)取等號(hào).

所以當(dāng)米且米時(shí),可使得活動(dòng)中心的截面面積最大. .............16

方法二:欲使活動(dòng)中心內(nèi)部空間盡可能大,則影長(zhǎng)EG恰為米,則此時(shí)點(diǎn),

設(shè)過(guò)點(diǎn)G的上述太陽(yáng)光線為,則所在直線方程為y=-(x30),

........10

由直線與半圓H相切,得

而點(diǎn)H(r,h)在直線的下方,則3r4h1000,

,從而 ...............13

.

當(dāng)且僅當(dāng)時(shí)取等號(hào).

所以當(dāng)米且米時(shí),可使得活動(dòng)中心的截面面積最大. ...........16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在上海自貿(mào)區(qū)的利好刺激下,公司開拓國(guó)際市場(chǎng),基本形成了市場(chǎng)規(guī)模;自2014年1月以來(lái)的第個(gè)月(2014年1月為第一個(gè)月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量+出口量)分別為(單位:萬(wàn)件),依據(jù)銷售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下營(yíng)銷趨勢(shì):,(其中,為常數(shù),),已知萬(wàn)件,萬(wàn)件,萬(wàn)件.

(1)求,的值,并寫出滿足的關(guān)系式;

(2)證明:逐月遞增且控制在2萬(wàn)件內(nèi);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn), ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)路燈的平面設(shè)計(jì)示意圖,其中曲線段AOB可視為拋物線的一部分,坐標(biāo)原點(diǎn)O為拋物線的頂點(diǎn),拋物線的對(duì)稱軸為y軸,燈桿BC可視為線段,其所在直線與曲線AOB所在的拋物線相切于點(diǎn)B.已知AB=2分米,直線軸,點(diǎn)C到直線AB的距離為8分米.燈桿BC部分的造價(jià)為10/分米;若頂點(diǎn)O到直線AB的距離為t分米,則曲線段AOB部分的造價(jià)為. 設(shè)直線BC的傾斜角為,以上兩部分的總造價(jià)為S.

(1)①求t關(guān)于的函數(shù)關(guān)系式;

②求S關(guān)于的函數(shù)關(guān)系式;

(2)求總造價(jià)S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1 , F2分別是長(zhǎng)軸長(zhǎng)為 的橢圓C: 的左右焦點(diǎn),A1 , A2是橢圓C的左右頂點(diǎn),P為橢圓上異于A1 , A2的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與OM的斜率之積恒為﹣
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)F1且不與坐標(biāo)軸垂直的直線C(2,2,0)交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與B(2,0,0)軸交于點(diǎn)N,點(diǎn)N橫坐標(biāo)的取值范圍是 ,求線段AB長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在正方體的面對(duì)角線上運(yùn)動(dòng),則下列四個(gè)命題:

;

;

③平面平面

④三棱錐的體積不變.

其中正確的命題序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,,是數(shù)列的前項(xiàng)的和.

(1)求數(shù)列的通項(xiàng)公式

(2)若,成等差數(shù)列,18,成等比數(shù)列,求正整數(shù)的值;

(3)是否存在,使得為數(shù)列中的項(xiàng)?若存在求出所有滿足條件的的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行六面體中,

求證:(1);

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長(zhǎng)為,圓的面積小于13.

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過(guò)點(diǎn)的直線與圓交于不同的兩點(diǎn),以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案