【題目】在上海自貿(mào)區(qū)的利好刺激下,公司開拓國際市場,基本形成了市場規(guī)模;自2014年1月以來的第個(gè)月(2014年1月為第一個(gè)月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量+出口量)分別為、和(單位:萬件),依據(jù)銷售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下營銷趨勢:,(其中,為常數(shù),),已知萬件,萬件,萬件.
(1)求,的值,并寫出與滿足的關(guān)系式;
(2)證明:逐月遞增且控制在2萬件內(nèi);
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為邊BC上一點(diǎn),AD=6,BD=3, DC=2.
(1)若AD⊥BC,求∠BAC的大小;
(2)若∠ABC= ,求△ADC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上是減函數(shù),求的最小值;
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知 ,,且函數(shù)的圖像上的任意兩條對稱軸之間的距離的最小值是.
(1)求的值:
(2)將函數(shù)的圖像向右平移單位后,得到函數(shù)的圖像,求函數(shù)在上的最值,并求取得最值時(shí)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市隨機(jī)選取位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購買,“×”表示未購買.
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估計(jì)顧客同時(shí)購買乙和丙的概率;
(Ⅱ)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購買中商品的概率;
(Ⅲ)如果顧客購買了甲,則該顧客同時(shí)購買乙、丙、丁中那種商品的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù).
()若函數(shù)在處取得極值,且對,恒成立,求實(shí)數(shù)的取值范圍.
()當(dāng)且時(shí),試比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圖像上有一最低點(diǎn),若圖像上各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮為原來的倍,再向左平移個(gè)單位得,又的所有根從小到大依次相差個(gè)單位,則的解析式為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某街道居委會擬在地段的居民樓正南方向的空白地段上建一個(gè)活動中心,其中米.活動中心東西走向,與居民樓平行. 從東向西看活動中心的截面圖的下部分是長方形,上部分是以為直徑的半圓. 為了保證居民樓住戶的采光要求,活動中心在與半圓相切的太陽光線照射下落在居民樓上的影長不超過米,其中該太陽光線與水平線的夾角滿足.
(1)若設(shè)計(jì)米,米,問能否保證上述采光要求?
(2)在保證上述采光要求的前提下,如何設(shè)計(jì)與的長度,可使得活動中心的截面面積最大?(注:計(jì)算中取3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com