【題目】拋擲紅、藍(lán)兩顆骰子,當(dāng)已知紅色骰子的點數(shù)為偶數(shù)時,兩顆骰子的點數(shù)之和不小于9的概率是( 。

A. B. C. D.

【答案】C

【解析】

利用列舉法求出當(dāng)紅色骰子的點數(shù)為偶數(shù)時,有18種,其中兩棵骰子點數(shù)之和不小于9的有6種,由此能求出當(dāng)已知紅色骰子的點數(shù)為偶數(shù)時,兩顆骰子的點數(shù)之和不小于9的概率.

拋擲紅、藍(lán)兩枚骰子,第一個數(shù)字代表紅色骰子,第二個數(shù)字代表藍(lán)色骰子,

當(dāng)紅色骰子的點數(shù)為偶數(shù)時,有18種,分別為:

(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),

(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),

其中兩棵骰子點數(shù)之和不小于9的有6種,分別為:

(4,5),(4,6),(6,3),(6,4),(6,5),(6,6),

∴當(dāng)已知紅色骰子的點數(shù)為偶數(shù)時,兩顆骰子的點數(shù)之和不小于9的概率是P=

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有關(guān)于的一元二次方程

)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.

)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中,下列命題正確的是( )

A.若平面內(nèi)有無數(shù)條直線與直線平行,則

B.若平面內(nèi)有無數(shù)條直線與平面平行,則

C.若平面內(nèi)有無數(shù)條直線與直線垂直,則

D.若平面內(nèi)有無數(shù)條直線與平面垂直,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底)。

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若存在均屬于區(qū)間,,且,使,證明:

(Ⅲ)對于函數(shù)定義域內(nèi)的任意實數(shù),若存在常數(shù),,使得都成立,則稱直線為函數(shù)的分界線。試探究當(dāng)時,函數(shù)是否存在“分界線”?若存在,請給予證明,并求出,的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)設(shè),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在公共點處有相同的切線,求點的橫坐標(biāo);

(Ⅲ)設(shè),且曲線總存在公切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對高三年級進(jìn)行身高統(tǒng)計,測量隨機抽取的20名學(xué)生的身高,其頻率分布直方圖如下(單位:cm

1)根據(jù)頻率分布直方圖,求出這20名學(xué)生身高中位數(shù)的估計值和平均數(shù)的估計值.

2)在身高為140—160的學(xué)生中任選2,求至少有一人的身高在150—160之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象上所有點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再將所得的圖象向左平移個單位長度后得到函數(shù)的圖象.

1)寫出函數(shù)的解析式;

2)若對任意 , 恒成立,求實數(shù)的取值范圍;

3)求實數(shù)和正整數(shù),使得上恰有個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,分別為的中點,的中點, ,.將沿折起到的位置,使得平面平面, 的中點,如圖2.

Ⅰ)求證: 平面;

Ⅱ)求F到平面A1OB的距離.

    1 2

查看答案和解析>>

同步練習(xí)冊答案