精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

1)當時,求函數的單調增區(qū)間;

2)設函數, 若函數的最小值是的值;

3若函數, 的定義域都是,對于函數的圖象上的任意一點,在函數的圖象上都存在一點,使得,其中是自然對數的底數, 為坐標原點的取值范圍

【答案】1)(2

【解析】試題分析:求函數的單調區(qū)間可利用求導完成,求函數的最值可通過求導研究函數的單調性求出極值,并與區(qū)間端點函數值比較得出最值;解決問題,先求出斜率的取值范圍,根據垂直關系得出斜率的取值范圍,轉化為恒成立問題,借助恒成立思想解題.

試題解析:

1)當時, ,

因為上單調增,且,

所以當時, ;當時,

所以函數的單調增區(qū)間是

2,則,令,

時, ,函數上單調減;

時, ,函數上單調增

所以

,即時,

函數的最小值,

,解得(舍),所以;

,即時,

函數的最小值,解得(舍)

綜上所述, 的值為

3)由題意知, ,

考慮函數,因為上恒成立,

所以函數上單調增,故

所以,即上恒成立,

上恒成立

,則上恒成立,

所以上單調減,所以

,

上恒成立,

所以上單調增,所以

綜上所述, 的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某工廠的A、B、C三個不同車間生產同一產品的數量(單位:件)如表所示.質檢人員用分層抽樣的方法從這些產品中共抽取6件樣品進行檢測.

車間

A

B

C

數量

50

150

100

(1)求這6件樣品中來自A、B、C各車間產品的數量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件商品來自相同車間的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2且BE⊥AD,則(

A.AB+BC有最大值
B.AB+BC有最小值
C.AE+DC有最大值
D.AE+DC有最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在甲、乙兩個盒子中分別裝有標號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個球被取出的可能性相等.
(1)求取出的兩個球上標號為相同數字的概率;
(2)求取出的兩個球上標號之積能被3整除的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,點,直線與動直線的交點為,線段的中垂線與動直線的交點為

1求動點的軌跡的方程;

2過動點作曲線的兩條切線,切點分別為 ,求證: 的大小為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某紡紗廠生產甲、乙兩種棉紗,已知生產甲種棉紗1噸需耗一級籽棉2噸、二級籽棉1噸;生產乙種棉紗1噸需耗一級籽棉1噸,二級籽棉2噸.每1噸甲種棉紗的利潤為900元,每1噸乙種棉紗的利潤為600元.工廠在生產這兩種棉紗的計劃中,要求消耗一級籽棉不超過250噸,二級籽棉不超過300噸.問甲、乙兩種棉紗應各生產多少噸,能使利潤總額最大?并求出利潤總額的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱長為ɑ 的正方體ABCD﹣A1B1C1D1中,E、F、G分別是CB.CD.CC1的中點.

(1)求直線 A1C與平面ABCD所成角的正弦的值;
(2)求證:平面A B1D1∥平面EFG.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F(xiàn)為CE上的點,且BF⊥平面ACE,AC,BD交于G點

(1)求證:AE∥平面BFD
(2)求證:AE⊥平面BCE
(3)求三棱柱C﹣BGF的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2.

(1)求證:平面PAC⊥平面PCD;
(2)若E是PD的中點,求平面BCE將四棱錐P﹣ABCD分成的上下兩部分體積V1、V2之比.

查看答案和解析>>

同步練習冊答案