【題目】如圖,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,AC,BD交于G點(diǎn)
(1)求證:AE∥平面BFD
(2)求證:AE⊥平面BCE
(3)求三棱柱C﹣BGF的體積.
【答案】
(1)證明:依題意可知:G是AC中點(diǎn),
∵BF⊥平面ACE,則CE⊥BF,而BC=BE,∴F是EC中點(diǎn).
在△ABC中,F(xiàn)G∥AE,∴AE∥平面BFD
(2)證明:∵AD⊥平面ABE,AD∥BC,
∴BC⊥平面ABE,則AE⊥BC.
又∵BF⊥平面ACE,則CE⊥BF,
∴AE⊥平面BCE
(3)∵AE∥平面BFD,∴AE∥FG,而AE⊥平面BCG,
∴FG⊥平面BCE,∴GF⊥平面BCF.
∵G是AC的中點(diǎn),∴F是CE的中點(diǎn),且FG= ,
∵BF⊥平面ACE,∴BF⊥CE.
∴在Rt△BCE中,BF=CF= .
∴ ,
則 .
【解析】(1)依題意可知G是AC中點(diǎn),由BF⊥平面ACE,得CE⊥BF,再由BC=BE,可得F是EC中點(diǎn),得到FG∥AE,由線面平行的判定得AE∥平面BFD.(2)由AD⊥平面ABE,AD∥BC,可得BC⊥平面ABE,進(jìn)一步得到AE⊥BC.結(jié)合BF⊥平面ACE,得CE⊥BF,由線面垂直的判定得AE⊥平面BCE;(3)由已知可得GF⊥平面BCF.解直角三角形求得△BCF的面積,然后利用等積法求得三棱柱C﹣BGF的體積.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面垂直的判定的相關(guān)知識可以得到問題的答案,需要掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出四個(gè)命題的表述: ①直線(3+m)x+4y﹣3+3m=0(m∈R)恒過定點(diǎn)(﹣3,3);
②線段AB的端點(diǎn)B的坐標(biāo)是(3,4),A在圓x2+y2=4上運(yùn)動,則線段AB的中點(diǎn)M的軌跡方程 +(y﹣2)2=1
③已知M={(x,y)|y= },N={(x,y)|y=x+b},若M∩N≠,則b∈[﹣ , ];
④已知圓C:(x﹣b)2+(y﹣c)2=a2(a>0,b>0,c>0)與x軸相交,與y軸相離,則直線ax+by+c=0與直線x+y+1=0的交點(diǎn)在第二象限.
其中表述正確的是( (填上所有正確結(jié)論對應(yīng)的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)設(shè)函數(shù), .若函數(shù)的最小值是,求的值;
(3)若函數(shù), 的定義域都是,對于函數(shù)的圖象上的任意一點(diǎn),在函數(shù)的圖象上都存在一點(diǎn),使得,其中是自然對數(shù)的底數(shù), 為坐標(biāo)原點(diǎn).求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為菱形, , , , ,平面平面, , 為的中點(diǎn), 為平面內(nèi)任一點(diǎn).
(1)在平面內(nèi),過點(diǎn)是否存在直線使?如果不存在,請說明理由,如果存在,請說明作法;
(2)過, , 三點(diǎn)的平面將幾何體截去三棱錐,求剩余幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知球內(nèi)接四棱錐的高為相交于,球的表面積為,若為中點(diǎn).
(1)求異面直線和所成角的余弦值;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+4x﹣4y﹣1=0所截得的弦長為6,則 的最小值為( )
A.10
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線,拋物線, 與有公共的焦點(diǎn), 與在第一象限的公共點(diǎn)為,直線的傾斜角為,且,則關(guān)于雙曲線的離心率的說法正確的是()
A. 僅有兩個(gè)不同的離心率且 B. 僅有兩個(gè)不同的離心率且 C. 僅有一個(gè)離心率且 D. 僅有一個(gè)離心率且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC1是正方體ABCD﹣A1B1C1D1的對角線.
(1)求證:平面A1BD∥平面CD1B1;
(2)求證:直線AC1⊥直線BD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com