若直線上有兩個點在平面外,則( )
A.直線上至少有一個點在平面內(nèi) |
B.直線上有無窮多個點在平面內(nèi) |
C.直線上所有點都在平面外 |
D.直線上至多有一個點在平面內(nèi) |
試題分析:根據(jù)題意,兩點確定一條直線,那么由于直線上有兩個點在平面外,則直線在平面外,只能是直線與平面相交,或者直線與平面平行,那么可知直線上至多有一個點在平面內(nèi),故選D.
點評:考查了線面的位置關系的運用,屬于基礎題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,三棱柱
的所有棱長都為
,且
平面
,
為
中點.
(Ⅰ)求證:
面
;
(Ⅱ)求二面角
的大小的余弦值;
(Ⅲ)求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在正四面體
(所有棱長都相等)中,
分別是
的中點,下面四個結論中不成立的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
為兩條直線,
為兩個平面,下列說法正確的是( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知空間四邊形
中,
,
是
的中點.
(Ⅰ)求證:
平面CDE;
(Ⅱ)若G為
的重心,試在線段AE上確定一點F,使得GF//平面CDE.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是正方形,
底面
,且PA=AB.
(1)求證:BD
平面PAC;
(2)求異面直線BC與PD所成的角.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,三棱錐
中,
是
的中點,
,
,
,
,二面角
的大小為
.
(1)證明:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
P-ABCD中,底面
ABCD是平行四邊形,∠
ACB=90°,平面
PAD⊥平面
ABCD,
PA=
BC=1,
PD=
AB=,E、F分別為線段
PD和
BC的中點.
(Ⅰ) 求證:
CE∥平面
PAF;
(Ⅱ)在線段
BC上是否存在一點
G,使得平面
PAG和平面
PGC所成二面角的大小為60°?若存在,試確定
G的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,二面角的棱上有
C、
D兩點,線段
AC、
BD分別在這個二面角的兩個半平面內(nèi),且都垂直于
CD,已知
AC=2,
BD=3,
AB=6,
CD=
,則這個二面角的大小為( )
查看答案和解析>>