【題目】已知圓C:x2+y2+10x+10y+34=0.
(Ⅰ)試寫出圓C的圓心坐標(biāo)和半徑;
(Ⅱ)圓D的圓心在直線x=-5上,且與圓C相外切,被x軸截得的弦長(zhǎng)為10,求圓D的方程;
(Ⅲ)過點(diǎn)P(0,2)的直線交(Ⅱ)中圓D于E,F兩點(diǎn),求弦EF的中點(diǎn)M的軌跡方程.
【答案】(Ⅰ)圓心坐標(biāo)為(-5,-5),半徑為4;(Ⅱ)(x+5)2+(y-12)2=169;(Ⅲ)x2+y2+5x-14y+24=0.
【解析】試題分析:(Ⅰ)將圓的方程化為標(biāo)準(zhǔn)方程,即可得到圓心坐標(biāo)和半徑;(Ⅱ)設(shè)圓的半徑為,圓心縱坐標(biāo)為,由已知條件列出方程,求出與,由此能求出圓的方程;(Ⅲ)設(shè),根據(jù)列出且,化簡(jiǎn)可得到的軌跡方程.
試題解析:(Ⅰ)將圓的方程改寫為(x+5)2+(y+5)2=16,故圓心坐標(biāo)為(-5,-5),半徑為4.
(Ⅱ)設(shè)圓D的半徑為r,圓心縱坐標(biāo)為b,由條件可得r2=(r-1)2+52,解得r=13.
此時(shí)圓心縱坐標(biāo)b=r-1=12.
所以圓D的方程為(x+5)2+(y-12)2=169.
(Ⅲ)設(shè)M(x,y),依題意有DM⊥PM.
即(x≠0且x≠-5),
整理得x2+y2+5x-14y+24=0(x≠0且x≠-5).
當(dāng)x=0時(shí),y=12,符合題意,當(dāng)x=-5時(shí),y=2,符合題意.
故所求點(diǎn)M的軌跡方程為x2+y2+5x-14y+24=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)的定義域是,對(duì)任意
當(dāng)時(shí),.關(guān)于函數(shù)給出下列四個(gè)命題:
①函數(shù)是奇函數(shù);
②函數(shù)是周期函數(shù);
③函數(shù)的全部零點(diǎn)為;
④當(dāng)時(shí),函數(shù)的圖象與函數(shù)的圖象有且只有三個(gè)公共點(diǎn).
其中真命題的個(gè)數(shù)為 .
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代秦九韶算法可計(jì)算多項(xiàng)式anxn+an﹣1xn﹣1+…+a1x+a0的值,它所反映的程序框圖如圖所示,當(dāng)x=1時(shí),當(dāng)多項(xiàng)式為x4+4x3+6x2+4x+1的值為( )
A.5
B.16
C.15
D.11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐S﹣ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥面ABCD,已知∠ABC=45°,AB=2,BC=2 ,SB=SC= .
(1)設(shè)平面SCD與平面SAB的交線為l,求證:l∥AB;
(2)求證:SA⊥BC;
(3)求直線SD與面SAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx。
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求證:當(dāng)x>0時(shí),f(x)≥l-;
(3)若x-1>alnx對(duì)任意x>1恒成立,求實(shí)數(shù)a的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= .
(1)當(dāng)m=4時(shí),求函數(shù)f(x)的定義域M;
(2)當(dāng)a,b∈RM時(shí),證明:2|a+b|<|4+ab|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域?yàn)?/span>,解不等式.
【答案】(1)奇函數(shù)(2)增函數(shù)(3)
【解析】試題分析:(1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)與f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。(2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡(jiǎn),判斷,下結(jié)論五個(gè)步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。
試題解析:(1)函數(shù)為奇函數(shù).證明如下:
定義域?yàn)?/span>
又
為奇函數(shù)
(2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:
任取,則
,
即
故在(-1,1)上為增函數(shù)
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點(diǎn)睛】
(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)與f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。
(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡(jiǎn),定號(hào),下結(jié)論五個(gè)步驟。
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù).
(1)若的定義域和值域均是,求實(shí)數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;
(3)若,且對(duì)任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的左、右焦點(diǎn)分別是,且點(diǎn)在上,拋物線與橢圓交于四點(diǎn)
(I)求的方程;
(Ⅱ)試探究坐標(biāo)平面上是否存在定點(diǎn),滿足?(若存在,求出的坐標(biāo);若不存在,需說明理由.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,正方形所在的平面與正三角形ABC所在的平面互相垂直, ,且, 是的中點(diǎn).
(1)求證: ∥平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com