已知函數(shù),其中a為常數(shù).
(1)當(dāng)時,求的最大值;
(2)若在區(qū)間(0,e]上的最大值為,求a的值;
(3)當(dāng)時,試推斷方程=是否有實數(shù)解.
(1)=f(1)=-1;(2)a=;(3)方程|f(x)|=沒有實數(shù)解.
解析試題分析:(1)當(dāng)a=-1時,f(x)=-x+lnx,f′(x)=-1+
由0<x<1時,f′(x)>0;當(dāng)x>1時,f′(x)<0.
知f(x)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù),從而=f(1)=-1.
(2)利用導(dǎo)數(shù)確定函數(shù)的最大值得,=f=-1+ln
由-1+ln=-3,即得a=.
(3)由(1)知當(dāng)a=-1時=f(1)=-1,可知|f(x)|≥1;
應(yīng)用導(dǎo)數(shù)研究g(x)=,得到=g(e)=<1,即g(x)<1,
根據(jù)|f(x)|>g(x),即|f(x)|>知方程|f(x)|=沒有實數(shù)解.
試題解析:(1)當(dāng)a=-1時,f(x)=-x+lnx,f′(x)=-1+
當(dāng)0<x<1時,f′(x)>0;當(dāng)x>1時,f′(x)<0.
∴f(x)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù),=f(1)=-14分
(2)∵f′(x)=a+,x∈(0,e],∈
①若a≥,則f′(x)≥0,f(x)在(0,e]上增函數(shù)
∴=f(e)=ae+1≥0.不合題意 5分
②若a<,則由f′(x)>0>0,即0<x<
由f(x)<0<0,即<x≤e.從而f(x)在上增函數(shù),在為減函數(shù)
∴=f=-1+ln
令-1+ln=-3,則ln=-2∴=,即a=.
∵<,
∴a=為所求 8分
(3)由(1)知當(dāng)a=-1時=f(1)=-1,
∴|f(x)|≥1
又令g(x)=,g′(x)=,令g′(x)=0,得x=e,
當(dāng)0<x<e時,g′(x)>0,g(x)在(0,e)單調(diào)遞增;當(dāng)x>e時,g′(x)<0,g(x)在(e,+∞)單調(diào)遞減∴=g(e)=<1,∴g(x)<1
∴|f(x)|>g(x),即|f(x)|>∴方程|f(x)|=沒有實數(shù)解. 12分
考點:應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最(極)值,轉(zhuǎn)化與化歸思想,不等式恒成立問題,函數(shù)與方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
根據(jù)統(tǒng)計資料,某工藝品廠的日產(chǎn)量最多不超過20件,每日產(chǎn)品廢品率與日產(chǎn)量(件)之間近似地滿足關(guān)系式(日產(chǎn)品廢品率).已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤日正品贏利額日廢品虧損額)
(1)將該車間日利潤(千元)表示為日產(chǎn)量(件)的函數(shù);
(2)當(dāng)該車間的日產(chǎn)量為多少件時,日利潤最大?最大日利潤是幾千元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若曲線在點處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當(dāng)的值時,若直線與曲線沒有公共點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是的導(dǎo)函數(shù),,且函數(shù)的圖象過點.
(1)求函數(shù)的表達(dá)式;
(2)求函數(shù)的單調(diào)區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).
(1)求V關(guān)于θ的函數(shù)表達(dá)式;
(2)求的值,使體積V最大;
(3)問當(dāng)木梁的體積V最大時,其表面積S是否也最大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)的圖象在點處的切線方程;
(2)如果對于任意、,且,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(1,f(1))處的切線與直線x-6y-7=0垂直,導(dǎo)函數(shù)f′(x)的最小值為-12.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com