.點在正方體的面對角線上運動,


 
則下列四個命題中:

(1);
(2)平面
(3)三棱錐的體積隨點的運動而變化。
其中真命題的個數(shù)是(   )
A.1          B.2          C.3          D.0
A
解:對于(3),容易證明AD1∥BC1,從而BC1∥平面AD1C,故BC1上任意一點到平面AD1C的距離均相等,所以以P為頂點,平面AD1C為底面,則三棱錐A-D1PC的體積不變;不正確;
對于(2),連接A1B,A1C1容易證明A1C1∥AD1且相等,由于①知:AD1∥BC1,
所以BA1C1∥面ACD1,從而由線面平行的定義可得;正確;
對于(1)由于DC⊥平面BCB1C1,所以DC⊥BC1平面,若DP⊥BC1,則DC與DP重合,與條件矛盾;錯誤; 故答案為A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分9分)  如圖,四棱錐S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,點E是SD上的點,且DE=a(0<≦1).   

(Ⅰ)求證:對任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小為600C,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是直角梯形,,平面,點的中點,且.

(1)求四棱錐的體積;
(2)求證:∥平面;
(3)求直線和平面所成的角是正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知AO為平面的一條斜線,O為斜足,OB為OA在平面內(nèi)的射影,直線OC在平面內(nèi),且,則的大小為(  。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知矩形的面積為8,當矩形周長取最小值時,沿對角線折起,則三棱錐的外接球的表面積為________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

球內(nèi)有一內(nèi)接正方體,正方體的一個面在球的底面圓上,若正方體的一邊長為,則球的體積是_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三角形的兩邊長分別為4,5,它們夾角的余弦是方程2x2+3x-2=0的根,則第三邊長是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直二面角A—BD—C,平面ABD⊥平面BCD,若其中給定 AB="AD" =2,,,BC⊥CD .
(Ⅰ)求AC與平面BCD所成的角;
(Ⅱ)求點A到BC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在正方體中,,分別是的中點,則異面直線所成角為
A.B.
C.D.

查看答案和解析>>

同步練習冊答案