10.“?x∈R,x2+ax+1>0成立”是“|a|≤2”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 “?x∈R,x2+ax+1>0成立”?△=a2-4<0,?“|a|<2”.即可判斷出結(jié)論.

解答 解:“?x∈R,x2+ax+1>0成立”?△=a2-4<0,?“|a|<2”.
∴“?x∈R,x2+ax+1>0成立”是“|a|≤2”的充分不必要條件.
故選:A.

點(diǎn)評 本題考查了一元二次方程的實(shí)數(shù)根與判別式的關(guān)系、簡易邏輯的判定方法、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)z滿足$\frac{z}{2+ai}$=$\frac{2}{1+i}$(a∈R),若z的實(shí)部是虛部的2倍,則a等于(  )
A.-2B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面內(nèi)動(dòng)點(diǎn)P與點(diǎn)A(-3,0)和點(diǎn)B(3,0)的連線的斜率之積為-$\frac{8}{9}$.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡且曲線C,過點(diǎn)(1,0)的直線與曲線C交于M,N兩點(diǎn),記△AMB的面積為S1,△ANB的面積為S2,當(dāng)S1-S2取得最大值時(shí),求$\frac{{S}_{1}}{{S}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow a$,$\overrightarrow b$的夾角為120°,$\overrightarrow a=(1,\sqrt{3})$,$|\overrightarrow b|=1$,則$|\overrightarrow a+\overrightarrow b|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的首項(xiàng)a1=1,且滿足an+1-an≤n•2n,an-an+2≤-(3n+2)•2n,則a2017=2015×22017+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,已知點(diǎn)G是△ABC的重心,過點(diǎn)G作直線與AB、AC兩邊分別交于M、N兩點(diǎn),且$\overrightarrow{AM}$=$\frac{a}{3}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{6}$$\overrightarrow{AC}$,則$\frac{2}{a-1}$+$\frac{1}{b-2}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=5,|$\overrightarrow{c}$|=7.
(1)求$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)是否存在實(shí)數(shù)λ,使λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線?
(3)是否存在實(shí)數(shù)μ,使μ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≥0}\\{2x+y≥0}\\{3x-y-a≤0}\end{array}}\right.$,若目標(biāo)函數(shù)z=x+y的最小值為$-\frac{2}{5}$,則實(shí)數(shù)a的值為( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若z=(m2-m-2)+(m2-2m-3)i為純虛數(shù),則m=( 。
A.-1B.2C.3D.-1或2

查看答案和解析>>

同步練習(xí)冊答案