分析 將所求平方展開,利用已知的兩個向量的模長以及夾角求值,然后開方求模長.
解答 解:由已知得到向量$\overrightarrow a$,$\overrightarrow b$的夾角為120°,$\overrightarrow a=(1,\sqrt{3})$,$|\overrightarrow b|=1$,則$|\overrightarrow a+\overrightarrow b|$2=${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=4+2×2×1×cos120°+1=3;
所以$|\overrightarrow a+\overrightarrow b|$=$\sqrt{3}$;
故答案為:$\sqrt{3}$.
點評 本題考查了平面向量模長的計算;一般利用向量的數(shù)量積性質(zhì):模長平方等于向量的平方,然后開方求值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=n2 | B. | ${a_n}={(-1)^n}{n^2}$ | C. | ${a_n}={(-1)^{n+1}}{n^2}$ | D. | ${a_n}={(-1)^n}{(n+1)^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 1+$\frac{\sqrt{2}}{2}$ | C. | 2 | D. | $\frac{3}{2}$+ln2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{5π}{12}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$-2m | B. | 1-m | C. | 1-2m | D. | $\frac{1}{2}$-m |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com