18.已知f(n)=2n+1(n∈N*),集合A={1,2,3,4,5},B={3,4,5,6,7},記f(A)={n|f(n)∈A},f(B)={m|f(m)∈B},f(A)∩f(B)=( 。
A.{1,2}B.{1,2,3}C.{3,5}D.{3,5,7}

分析 利用函數(shù)性質(zhì)和交集定義求解.

解答 解:∵f(n)=2n+1(n∈N*),集合A={1,2,3,4,5},B={3,4,5,6,7},
記f(A)={n|f(n)∈A},f(B)={m|f(m)∈B},
∴f(A)∩f(B)={1,2}∩{1,2,3}={1,2}.
故選:A.

點(diǎn)評 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓的方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1,其左右焦點(diǎn)分別為F1,F(xiàn)2,過其左焦點(diǎn)且斜率為1的直線與該橢圓相交與A,B兩點(diǎn),則$\frac{1}{|{F}_{1}A|}+\frac{1}{|{F}_{1}B|}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{\sqrt{{x}^{2}-4}}{1-{x}^{3}}$,g(x)=$\frac{{x}^{3}-1}{\sqrt{9-{x}^{2}}}$,則f(x)•g(x)=-$\frac{\sqrt{{x}^{2}-4}}{\sqrt{{9-x}^{2}}}$,x∈(-3,-2]∪[2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知x,y>0且x+y=1,則xy的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義實(shí)數(shù)運(yùn)算x*y=$\left\{\begin{array}{l}{x,2x-1≥3y}\\{y,2x-1<3y}\end{array}\right.$,則|m-1|*m=|m-1|,則實(shí)數(shù)m的取值范圍是(-∞,$\frac{1}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)集A={a1,a2…an}(0≤a1<a2…<an,n≥2)具有性質(zhì)P;對任意的  i,j(1≤i≤j≤n),ai+aj與aj-ai兩數(shù)中至少有一個(gè)屬于A.
(1)分別判斷數(shù)集{0,1,3,4}與{0,2,3,6}是否具有性質(zhì)P,并說明理由;
(2)證明:a1=0,且nan=2(a1+a2+a+..+an
(3)當(dāng)n=5時(shí)若 a2=2,求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.Sn為數(shù)列{an}的前n項(xiàng)和,已知${a_n}>0,4{S_n}=({{a_n}+3})({{a_n}-1}),({n∈{N^*}})$.則{an}的通項(xiàng)公式an=2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a>b>0,0<c<1,則( 。
A.ac<bcB.abc<bacC.alogbc<blogacD.logac<logbc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.比較下列各題中兩個(gè)數(shù)的大。
(1)log60.8,log69.1;                       
(2)log0.17,log0.19;
(3)log0.15,log2.35                        
(4)loga4,loga6(a>0,且a≠1)

查看答案和解析>>

同步練習(xí)冊答案