9.已知函數(shù)f(x)=$\frac{\sqrt{{x}^{2}-4}}{1-{x}^{3}}$,g(x)=$\frac{{x}^{3}-1}{\sqrt{9-{x}^{2}}}$,則f(x)•g(x)=-$\frac{\sqrt{{x}^{2}-4}}{\sqrt{{9-x}^{2}}}$,x∈(-3,-2]∪[2,3).

分析 根據(jù)f(x),g(x)的解析式求出f(x)•g(x)的解析式即可.

解答 解:∵f(x)=$\frac{\sqrt{{x}^{2}-4}}{1-{x}^{3}}$,g(x)=$\frac{{x}^{3}-1}{\sqrt{9-{x}^{2}}}$,
∴f(x)•g(x)=$\frac{\sqrt{{x}^{2}-4}}{1-{x}^{3}}$•$\frac{{x}^{3}-1}{\sqrt{9-{x}^{2}}}$=-$\frac{\sqrt{{x}^{2}-4}}{\sqrt{{9-x}^{2}}}$,
x∈(-3,-2]∪[2,3),
故答案為:-$\frac{\sqrt{{x}^{2}-4}}{\sqrt{{9-x}^{2}}}$,x∈(-3,-2]∪[2,3).

點(diǎn)評 本題考查了求函數(shù)的解析式問題,考查函數(shù)的定義域,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在數(shù)列{an}中,前n項(xiàng)和為Sn,且Sn=$\frac{n(n+1)}{2}$,數(shù)列{bn}的前n項(xiàng)和為Tn,且bn=$\frac{{a}_{n}}{{2}^{n}}$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在m,n∈N*,使得Tn=am,若存在,求出所有滿足題意的m,n,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.二次函數(shù)y=ax2+bx和反比例函數(shù)$y=\frac{x}$在同一坐標(biāo)系中的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.方程x2-5x+1=0的兩根是兩圓錐曲線的離心率,它們是(  )
A.橢圓、雙曲線B.橢圓、拋物線C.雙曲線、拋物線D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸是x軸,拋物線上的點(diǎn)M(-3,m)到焦點(diǎn)的距離等于5,
(1)求拋物線的方程.
(2)過點(diǎn)P(-4,1)作直線l交拋物線與A,B兩點(diǎn),使弦AB恰好被P點(diǎn)平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A,B滿足,集合A={x|x+y2=1,y∈R},B={y|y=x2-1,x∈R},則A∩B=[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.對于函數(shù)f(x)=ax2+2x-2a,若方程f(x)=0有相異的兩根x1,x2
(1)若a>0,且x1<1<x2,求a的取值范圍;
(2)若x1-1,x2-1同號,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(n)=2n+1(n∈N*),集合A={1,2,3,4,5},B={3,4,5,6,7},記f(A)={n|f(n)∈A},f(B)={m|f(m)∈B},f(A)∩f(B)=(  )
A.{1,2}B.{1,2,3}C.{3,5}D.{3,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若命題p:?x∈R,cosx≤1,則?p( 。
A.?x0∈R,cosx0>1B.?x∈R,cosx>1C.?x∈R,cos≤1D.?x0∈R,cosx≥1

查看答案和解析>>

同步練習(xí)冊答案