【題目】下列說法中錯(cuò)誤的是( )

A. 先把高二年級(jí)的2000名學(xué)生編號(hào)為1到2000,再從編號(hào)為1到50的50名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號(hào)為,然后抽取編號(hào)為,,的學(xué)生,這樣的抽樣方法是系統(tǒng)抽樣法;

B. 獨(dú)立性檢驗(yàn)中,越大,則越有把握說兩個(gè)變量有關(guān);

C. 若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1;

D. 若一組數(shù)據(jù)1、a、3的平均數(shù)是2,則該組數(shù)據(jù)的方差是.

【答案】C

【解析】

對(duì)選項(xiàng)逐個(gè)進(jìn)行分析,排除即可得到答案.

對(duì)于A,根據(jù)個(gè)體數(shù)目較多,且沒有明顯的差異,抽取樣本間隔相等,知這種抽樣方法是系統(tǒng)抽樣法,∴A正確;

對(duì)應(yīng)B,獨(dú)立性檢驗(yàn)中,越大,應(yīng)該是說明兩個(gè)變量有關(guān)系的可能性大,即有足夠的把握說明兩個(gè)變量有關(guān),B正確;

對(duì)于C,兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)|r|的值越接近于1,C錯(cuò)誤;

對(duì)于D,一組數(shù)據(jù)1、a、3的平均數(shù)是2,∴a=2;

∴該組數(shù)據(jù)的方差是s2×[(1﹣2)2+(2﹣2)2+(3﹣2)2]=,D正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一種候鳥每年都按一定的路線遷陟,飛往繁殖地產(chǎn)卵科學(xué)家經(jīng)過測量發(fā)現(xiàn)候鳥的飛行速度可以表示為函數(shù),單位是,其中表示候鳥每分鐘耗氧量的單位數(shù),表示測量過程中候鳥每分鐘的耗氧偏差.(參考數(shù)據(jù):,

1,候鳥每分鐘的耗氧量為個(gè)單位時(shí),它的飛行速度是多少?

2,候鳥停下休息時(shí),它每分鐘的耗氧量為多少個(gè)單位?

3若雄鳥的飛行速度為,雌鳥的飛行速度為,那么此時(shí)雄鳥每分鐘的耗氧量是雌鳥每分鐘的耗氧量的多少倍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng),且的最大值為,求的值;

2)方程上的兩解分別為、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

2)是否存在常數(shù),當(dāng)時(shí),的值域?yàn)閰^(qū)間,且區(qū)間的長度為(視區(qū)間的長度為),如果存在,求出的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線在第一象限內(nèi)的點(diǎn)到焦點(diǎn)F的距離為

(1)求拋物線的方程;

(2)若直線與拋物線C相交于A,B兩點(diǎn),與圓相交于DE兩點(diǎn),O為坐標(biāo)原點(diǎn),,試問:是否存在實(shí)數(shù)a,使得|DE|的長為定值?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)為奇函數(shù).

1)求的值;

2)用定義證明函數(shù)的單調(diào)性,并解不等式;

3)設(shè),當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線 .以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的右準(zhǔn)線方程,離心率,左、右頂點(diǎn)分別為AB,右焦點(diǎn)為F,點(diǎn)P在橢圓上,且位于x軸上方.

(Ⅰ)設(shè)直線的斜率為,直線的斜率為,求的最小值;

(Ⅱ)點(diǎn)Q在右準(zhǔn)線l上,且,直線x負(fù)半軸于點(diǎn)M,若,求點(diǎn)P坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案