【題目】已知函數(shù),圖象的相鄰兩條對(duì)稱軸之間的距離是,其中一個(gè)最高點(diǎn)為.

1)求函數(shù)的解析式;

2)求函數(shù)上的單調(diào)遞增區(qū)間;

3)若對(duì)于任意的恒成立,求的取值范圍.

【答案】1;(2)遞增區(qū)間;(3.

【解析】

1)根據(jù)函數(shù)圖象的最高點(diǎn)的坐標(biāo)求出的值,結(jié)合題意求出該函數(shù)的最小正周期,可求出的值,再將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,結(jié)合的取值范圍可求出的值,從而可得出函數(shù)的解析式;

2)求出函數(shù)上的單調(diào)區(qū)間,再與區(qū)間取交集可得出函數(shù)上的單調(diào)遞增區(qū)間;

3)由題意得出,求出函數(shù)在區(qū)間上的最小值,即可得出實(shí)數(shù)的取值范圍.

1)由于函數(shù)的圖象的一個(gè)最高點(diǎn)坐標(biāo)為,則,得.

設(shè)該函數(shù)的最小正周期為,則,所以,,得,

此時(shí)

將點(diǎn)的坐標(biāo)代入函數(shù)的解析式得,,

,則,,解得.

因此,;

2)令,解得,

所以,函數(shù)的單調(diào)遞增區(qū)間為,

,

因此,函數(shù)上的單調(diào)遞增區(qū)間為;

3恒成立,等價(jià)于恒成立,

,則,

當(dāng),即時(shí),該函數(shù)取得最小值,即,.

因此,實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表為年至年某百貨零售企業(yè)的線下銷售額單位:萬元),其中年份代碼年份

年份代碼

線下銷售額

(1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測年該百貨零售企業(yè)的線下銷售額;

(2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中, 平面,底面是菱形, , 的交點(diǎn), 為棱上一點(diǎn),

(1)證明:平面⊥平面;

(2)若三棱錐的體積為,

求證: ∥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,四邊形ABCD是菱形,∠BCD120°,PA⊥底面ABCD,PA4,AB2

I)求證:平面PBD⊥平面PAC;

(Ⅱ)過AC的平面交PD于點(diǎn)M若平面AMC把四面體PACD分成體積相等的兩部分,求二面角AMCP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙等5人排成一排照相,按下列要求各有多少種不同的排法?求:

1)甲、乙不能相鄰;

2)甲、乙相鄰且都不站在兩端;

3)甲、乙之間僅相隔1人;

4)按高個(gè)子站中間,兩側(cè)依次變矮(五人個(gè)子各不相同)的順序排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】央視傳媒為了解央視舉辦的朗讀者節(jié)目的收視時(shí)間情況,隨機(jī)抽取了某市名觀眾進(jìn)行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時(shí)間編成如圖所示的莖葉圖(單位:分鐘),收視時(shí)間在分鐘以上(包括分鐘)的稱為朗讀愛好者,收視時(shí)間在分鐘以下(不包括分鐘)的稱為非朗讀愛好者”.規(guī)定只有女朗讀愛好者可以參加央視競選.

(1)若采用分層抽樣的方法從朗讀愛好者非朗讀愛好者中隨機(jī)抽取名,再從這名觀眾中任選名,求至少選到朗讀愛好者的概率;

(2)若從所有的朗讀愛好者中隨機(jī)抽取名,求抽到的名觀眾中能參加央視競選的人數(shù)的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,點(diǎn)為左焦點(diǎn),過點(diǎn)軸的垂線交橢圓兩點(diǎn),且.

(1)求橢圓的方程;

(2)若是橢圓上異于點(diǎn)的兩點(diǎn),且直線的傾斜角互補(bǔ),則直線的斜率是否為定值?若是,求出這個(gè)定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017湖北部分重點(diǎn)中學(xué)高三聯(lián)考)從編號(hào)為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號(hào)從小到大依次為007,032,…,則樣本中最大的編號(hào)應(yīng)該為(  )

A. 483 B. 482

C. 481 D. 480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP2,AD=AE=1,AEAB,且AEBP

(1)求平面PCD與平面ABPE所成的二面角的余弦值;

(2)線段PD上是否存在一點(diǎn)N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點(diǎn)N的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案