如圖,在四棱錐中,底面為菱形,,的中點(diǎn).

(1)若,求證:平面平面
(2)點(diǎn)在線段上,,試確定的值,使平面.

(1)詳見(jiàn)解析;(2).

解析試題分析:(1)要證平面平面,需要證明平面,只需證明
均成立;(2)探索性問(wèn)題,要點(diǎn)在線段上,當(dāng)時(shí)平面,
需要求出,只需證明,即證明,需證,,而∥平面是已知條件,顯然成立.
試題解析:(1)連四邊形為菱形,
 , 為正三角形,的中點(diǎn),
 ,                                                 3分
,的中點(diǎn), ,
平面,平面,
平面平面.                                        6分
(2)當(dāng)時(shí),∥平面,
證明:若∥平面,連,
可得,,,    ,      9分
∥平面,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐S-ABCD中,底面ABCD是矩形,SA底面ABCD,SA=AD,點(diǎn)M是SD的中點(diǎn),ANSC且交SC于點(diǎn)N.

(Ⅰ)求證:SB∥平面ACM;
(Ⅱ)求證:平面SAC平面AMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知四棱錐,底面是平行四邊形,點(diǎn)在平面上的射影邊上,且,

(Ⅰ)設(shè)的中點(diǎn),求異面直線所成角的余弦值;
(Ⅱ)設(shè)點(diǎn)在棱上,且.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,側(cè)面與底面垂直, 分別是的中點(diǎn),,,.

(Ⅰ)求證:平面;
(Ⅱ)若點(diǎn)為線段的中點(diǎn),求異面直線所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1.

(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面是正方形,,點(diǎn)在棱上.

(1)求證:平面平面;
(2)當(dāng),且時(shí),確定點(diǎn)的位置,即求出的值.
(3)在(2)的條件下若F是PD的靠近P的一個(gè)三等分點(diǎn),求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O為AB的中點(diǎn).

(Ⅰ)求證:EO⊥平面ABCD;
(Ⅱ)求點(diǎn)D到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在圓錐PO中, PO=,?O的直徑AB=2, C為弧AB的中點(diǎn),D為AC的中點(diǎn).

(1)求證:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案