如圖,在四棱錐S-ABCD中,底面ABCD是矩形,SA底面ABCD,SA=AD,點M是SD的中點,ANSC且交SC于點N.

(Ⅰ)求證:SB∥平面ACM;
(Ⅱ)求證:平面SAC平面AMN.

(Ⅰ)見解析;(Ⅱ)見解析.

解析試題分析:(Ⅰ) 連接,交于點,連接,證明,依據(jù)直線與平面平行的判定定理可知,;(Ⅱ)先由已知條件得到,依據(jù)直線與平面垂直的判定定理證得,再由,依據(jù)直線與平面垂直的判定定理證得,從而有,結(jié)合已知條件,依據(jù)直線與平面垂直的判定定理證得,再依據(jù)平面與平面垂直的判定定得到.
試題解析:(Ⅰ)連接,交于點,連接

為矩形,
中點,又中點,∴.
,∴.
(Ⅱ)∵,∴,
為矩形,∴,且,
,∴,
,的中點,∴,且
,
 ,又∵,且, ∴
,∴.
考點:1.直線與平面平行的判定定理;2.直線與平面垂直的判定定理;3.直線與平面垂直的性質(zhì)定理;4.平面與平面垂直的判定定理

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,點分別是棱的中點.

(1)求證://平面;
(2)若平面平面,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且,點C為圓O上一點,且.點P在圓O所在平面上的正投影為點D,PD=DB.

(1)求證:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC,設點F為棱AD的中點.

(1)求證:DC平面ABC;
(2)求直線與平面ACD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=AB=4,∠CDA=120°.

(1)求證:BD⊥PC;
(2)設E為PC的中點,點F在線段AB上,若直線EF∥平面PAD,求AF的長;
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖的幾何體中,平面為正方形,平面為等腰梯形,,,,.

(1)求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為直角梯形,,垂直于底面,分別為的中點.

(1)求證:
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖長方體中,底面是正方形,的中點,是棱上任意一點.

⑴求證:;
⑵如果,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為菱形,的中點.

(1)若,求證:平面平面;
(2)點在線段上,,試確定的值,使平面.

查看答案和解析>>

同步練習冊答案