【題目】如圖所示,橢圓的短軸為,,離心率,為第一象限內(nèi)橢圓上的任意一點(diǎn),設(shè)軸于,為線段的中點(diǎn),過作直線軸.
(1)求橢圓的方程;
(2)若的縱坐標(biāo)為,求直線截橢圓所得的弦長;
(3)若直線交直線于,為直線上一點(diǎn),且為原點(diǎn)),證明:為線段的中點(diǎn).
【答案】(1) ;(2) ;(3)見解析.
【解析】
(1)先求出b=1,再根據(jù)離心率公式和a2=b2+c2,即可求出,
(2)根據(jù)弦長公式即可求出,
(3)設(shè)P(x0,y0),求出點(diǎn)M和D的坐標(biāo)根據(jù)DQ⊥OQ(O為原點(diǎn))即可證明.
(1)
,則,a=2
橢圓C的方程為:
(2)由點(diǎn)P在橢圓上,則,可得
,,
直線AQ:y=x-1
代入,整理可得:
從而所截弦長為
(3)設(shè)P(),則Q, ①
直線AQ:y=x-1,與直線l:y=1聯(lián)立
可得=
設(shè)D(),由DQ,可得
解得,代入①式中,化簡
則
代入①式中,則,得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點(diǎn).
(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù), .
(1)試討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且.
(1)若為線段的中點(diǎn),求證平面;
(2)求三棱錐體積的最大值;
(3)若,點(diǎn)在線段上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中歐班列是推進(jìn)與“一帶一路”沿線國家道路聯(lián)通、貿(mào)易暢通的重要舉措,作為中歐鐵路在東北地區(qū)的始發(fā)站,沈陽某火車站正在不斷建設(shè).目前車站準(zhǔn)備在某倉庫外,利用其一側(cè)原有墻體,建造一間墻高為3米,底面為12平方米,且背面靠墻的長方體形狀的保管員室.由于此保管員室的后背靠墻,無需建造費(fèi)用,因此甲工程隊(duì)給出的報(bào)價(jià)為:屋子前面新建墻體的報(bào)價(jià)為每平方米400元,左右兩面新建墻體報(bào)價(jià)為每平方米150元,屋頂和地面以及其他報(bào)價(jià)共計(jì)7200元.設(shè)屋子的左右兩側(cè)墻的長度均為米.
(1)當(dāng)左右兩面墻的長度為多少時(shí),甲工程隊(duì)報(bào)價(jià)最低?
(2)現(xiàn)有乙工程隊(duì)也參與此保管員室建造競標(biāo),其給出的整體報(bào)價(jià)為元,若無論左右兩面墻的長度為多少米,乙工程隊(duì)都能競標(biāo)成功,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018安徽淮南市高三一模(2月)】已知函數(shù).
(I)若,討論函數(shù)的單調(diào)性;
(II)曲線與直線交于, 兩點(diǎn),其中,若直線斜率為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過的直線與橢圓交于兩點(diǎn),過與平行的直線與橢圓交于兩點(diǎn),求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直三棱柱中, , , ,點(diǎn), 分別是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)若二面角的大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com