點M的直角坐標(biāo)為(-1,
3
)
,則點M的極坐標(biāo)為( 。
分析:根據(jù)點M的直角坐標(biāo)是(-1,
3
2
),利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,求得ρ和θ的值,即可求得它的極坐標(biāo)(ρ,θ).
解答:解:由于點M的直角坐標(biāo)為(-1,
3
)
,設(shè)M的極坐標(biāo)為(ρ,θ),
由于ρ2=x2+y2,可得:ρ2=4,∴ρ=2.
由于極角θ滿足cosθ=-
1
2
,sinθ=
3
2
,故θ為第二象限角,故θ=
3

故點M的極坐標(biāo)為 (2,
3
)
,
故選C.
點評:本題考查點的極坐標(biāo)和直角坐標(biāo)的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點M的直角坐標(biāo)為(-
3
,-1)
,則點M的極坐標(biāo)為
(2,
6
)
(2,
6
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點M的直角坐標(biāo)為(
3
,1,-2)
,則它的柱坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點M的直角坐標(biāo)為(3,-
3
)則它的極坐標(biāo)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海口二模)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的極坐標(biāo)方程是ρ=4cosθ,以極點為原點,極軸為x軸正方向建立平面直角坐標(biāo)系,直線的參數(shù)方程是:
x=2+tcosθ
y=1+tsinθ
(為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C1交于A,B兩點,點M的直角坐標(biāo)為(2,1),若
AB
=3
MB
,求直線的普通方程.

查看答案和解析>>

同步練習(xí)冊答案