如圖所示,O為坐標原點,過點P(2,0)且斜率為k的直線l交拋物線y2=2xM(x1,y1),N(x2,y2)兩點.

(1)寫出直線l的方程;

(2)求x1x2y1y2的值;

(3)求證:OMON.

分析:

x1x2y1y2,可考慮用韋達定理.證明OMON,則可用kOM·kON=-1或·=0來證明.

(1)解:直線l的方程為y=k(x-2)(k≠0).                           ①

(2)解:由①及y2=2x,消去y可得

k2x2-2(2k2+1)x+4k2=0.                                                   ②

M、N的橫坐標x1x2是②的兩個根,

由韋達定理,得x1x2==4.

y12=2x1,y22=2x2,

得(y1y2)2=4x1x2=4×4=16.

由圖可知y1y2<0,所以y1y2=-4.

(3)證明:設OM、ON的斜率分別為k1、k2,

由(2)可知,y1y2=-4,x1x2=4,

所以k1k2==-1.

所以OMON.

綠色通道:

本題的一般形式為直線l與拋物線y2=2px交于M(x1,y1)、N(x2,y2)兩點,且直線l過點P(2p,0),則x1x2=4p,y1y2=-4p,OMON.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖已知O為坐標原點,∠AOB=30°,∠ABO=90°,且點A的坐標為(2,0).
(1)求點B的坐標;
(2)若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A、B、O 三點,求此二次函數(shù)的解析式;                             
(3)在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)如圖,點O為坐標原點,直線l經(jīng)過拋物線C:y2=4x的焦點F.
(Ⅰ)若點O到直線l的距離為
12
,求直線l的方程;
(Ⅱ)設點A是直線l與拋物線C在第一象限的交點.點B是以點F為圓心,|FA|為半徑的圓與x軸負半軸的交點.試判斷直線AB與拋物線C的位置關系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:福建省泉州市普通中學2012屆高中畢業(yè)班質量檢查數(shù)學文科試題 題型:044

如圖,點O為坐標原點,直線l經(jīng)過拋物線C:y2=4x的焦點F.

(Ⅰ)若點O到直線l的距離為,求直線l的方程;

(Ⅱ)設點A是直線l與拋物線C在第一象限的交點.點B是以點F為圓心,|FA|為半徑的圓與x軸負半軸的交點.試判斷直線AB與拋物線C的位置關系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年福建省泉州市高三3月質量檢查數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,點O為坐標原點,直線l經(jīng)過拋物線C:y2=4x的焦點F.
(Ⅰ)若點O到直線l的距離為,求直線l的方程;
(Ⅱ)設點A是直線l與拋物線C在第一象限的交點.點B是以點F為圓心,|FA|為半徑的圓與x軸負半軸的交點.試判斷直線AB與拋物線C的位置關系,并給出證明.

查看答案和解析>>

同步練習冊答案