已知橢圓=1及以下3個函數(shù):①f(x)=x;②f(x)=sin x;③f(x)=cos x.其中函數(shù)圖像能等分該橢圓面積的函數(shù)個數(shù)有(  )
A.1個B.2個
C.3個D.0個
B
要使函數(shù)y=f(x)的圖像能等分該橢圓的面積,則f(x)的圖像應該關(guān)于橢圓的中心O對稱,即f(x)為奇函數(shù),①和②均滿足條件.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

過橢圓的左頂點作斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓過點,且離心率.

(1)求橢圓的標準方程;
(2)若直線與橢圓相交于兩點(不是左右頂點),橢圓的右頂點為,且滿足,試判斷直線是否過定點,若過定點,求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的焦點與橢圓的焦點重合,且該橢圓的長軸長為,是橢圓上的的動點.
(1)求橢圓標準方程;
(2)設(shè)動點滿足:,直線的斜率之積為,求證:存在定點,
使得為定值,并求出的坐標;
(3)若在第一象限,且點關(guān)于原點對稱,點軸的射影為,連接 并延長交橢圓于
,求證:以為直徑的圓經(jīng)過點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓=1的左焦點為F1,右頂點為A,上頂點為B.若∠F1BA=90°,則橢圓的離心率是(  )
A.  B.  C.  D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知中心在原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1,F2,兩條曲線在第一象限的交點記為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是(  )
A.0,B.C.,+∞D.,+∞

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的離心率為,則雙曲線的漸近線方程是________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系xOy中,F1F2分別為橢圓=1(ab>0)的左、右焦點,BC分別為橢圓的上、下頂點,直線BF2與橢圓的另一個交點為D,若cos∠F1BF2,則直線CD的斜率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是橢圓上一動點,是橢圓的兩個焦點,則的最大值為
A.3B.4C.5D.16

查看答案和解析>>

同步練習冊答案