已知焦點在
軸上的橢圓
過點
,且離心率為
,
為橢圓
的左頂點.
(1)求橢圓
的標準方程;
(2)已知過點
的直線
與橢圓
交于
,
兩點.
① 若直線
垂直于
軸,求
的大小;
② 若直線
與
軸不垂直,是否存在直線
使得
為等腰三角形?如果存在,求出直線
的方程;如果不存在,請說明理由.
(Ⅰ)
.
(Ⅱ)(。┊斨本
垂直于
軸時,直線
的方程為
.
(ⅱ)當直線
與
軸不垂直時,不存在直線
使得
為等腰三角形.
試題分析:(Ⅰ)設橢圓
的標準方程為
,且
.
由題意可知:
,
. 2分
解得
.
∴ 橢圓
的標準方程為
. 3分
(Ⅱ)由(Ⅰ)得
.設
.
(。┊斨本
垂直于
軸時,直線
的方程為
.
由
解得:
或
即
(不妨設點
在
軸上方). 5分
則直線
的斜率
,直線
的斜率
.
∵
,得
.
∴
. 6分
(ⅱ)當直線
與
軸不垂直時,由題意可設直線
的方程為
.
由
消去
得:
.
因為 點
在橢圓
的內(nèi)部,顯然
.
8分
因為
,
,
,
所以
.
∴
. 即
為直角三角形. 11分
假設存在直線
使得
為等腰三角形,則
.
取
的中點
,連接
,則
.
記點
為
.
另一方面,點
的橫坐標
,
∴點
的縱坐標
.
又
故
與
不垂直,矛盾.
所以 當直線
與
軸不垂直時,不存在直線
使得
為等腰三角形. 13分
點評:中檔題,曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題求橢圓、標準方程時,主要運用了橢圓的幾何性質。解題過程中,運用平面向量的數(shù)量積,“化證為算”,達到證明目的。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,F(xiàn)
1,F(xiàn)
2是雙曲線C:
(a>0,b>0)的左、右焦點,過F
1的直線
與
的左、右兩支分別交于A,B兩點.若 | AB | : | BF
2 | : | AF
2 |=3:4 : 5,則雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知某橢圓的焦點是
F1(-4,0)、
F2(4,0),過點
F2并垂直于
x軸的直線與橢圓的一個交點為
B,且|
F1B|+|
F2B|=10,橢圓上不同的兩點
A(
x1,
y1),
C(
x2,
y2)滿足條件 |
F2A|、|
F2B|、|
F2C|成等差數(shù)列(1)求該弦橢圓的方程;(2)求弦
AC中點的橫坐標;(3)設弦
AC的垂直平分線的方程為
y=
kx+
m,求
m的取值范圍
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,F(xiàn)
1,F(xiàn)
2是雙曲線
的左、右焦點,過F
1的直線
l與C的左、右兩支分別交于A,B兩點.若|AB|:|BF
2|:|AF
2|=3:4:5,則雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
的焦點為
F,準線為
l,點
P為拋物線上一點,且
,垂足為
A,若直線
AF的斜率為
,則|
PF|等于( )
A. | B.4 | C. | D.8 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分) 已知直線L:y=x+1與曲線C:
交于不同的兩點A,B;O為坐標原點。
(1)若
,試探究在曲線C上僅存在幾個點到直線L的距離恰為
?并說明理由;
(2)若
,且a>b,
,試求曲線C的離心率e的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的兩個焦點分別為
、
,則滿足△
的周長為
的動點
的軌跡方程為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
直線
被曲線
截得的弦長為
;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的焦點為F
1.F
2,點M在雙曲線上且
,則點M到x軸的距離為 ( )
查看答案和解析>>