已知拋物線的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)P為拋物線上一點(diǎn),且,垂足為A,若直線AF的斜率為,則|PF|等于( )
A.B.4C.D.8
B

試題分析:根據(jù)題意畫(huà)出圖象,連接AF,因?yàn)?i>P為拋物線上一點(diǎn),所以,因?yàn)橹本AF的斜率為,所以是等邊三角形,而焦點(diǎn)到準(zhǔn)線的距離為2,所以,所以
點(diǎn)評(píng):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離這一性質(zhì)的應(yīng)用是解決此題的關(guān)鍵,解決與圓錐曲線有關(guān)的問(wèn)題時(shí),要善于畫(huà)圖,數(shù)形結(jié)合解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若關(guān)于的方程的三個(gè)根可分別作為一個(gè)橢圓、雙曲線、拋物線的離心率,則的取值范圍為         . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C中心在原點(diǎn),焦點(diǎn)在軸上,一條經(jīng)過(guò)點(diǎn)且傾斜角余弦值為的直線交橢圓于A,B兩點(diǎn),交軸于M點(diǎn),又.
(1)求直線的方程;
(2)求橢圓C長(zhǎng)軸的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知對(duì)稱(chēng)軸為坐標(biāo)軸的雙曲線的漸近線方程為,若雙曲線上有一點(diǎn)M(),使,那雙曲線的交點(diǎn)(     )。
A.在軸上
B.在軸上
C.當(dāng)時(shí)在軸上
D.當(dāng)時(shí)在軸上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線與雙曲線的一條漸近線平行,則這兩條平行直線之間的距離是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且離心率為,為橢圓的左頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn).
① 若直線垂直于軸,求的大小;
② 若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C=1(a>b>0)的一個(gè)焦點(diǎn)是F(1,0),且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)F的直線交橢圓CM,N兩點(diǎn),線段MN的垂直平分線交y軸于點(diǎn)P(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓)的一個(gè)頂點(diǎn)為,離心率為,直線與橢圓交于不同的兩點(diǎn).(1) 求橢圓的方程;(2) 當(dāng)的面積為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)P(4,4),圓C:與橢圓E:有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案