已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,.
(1)求拋物線的方程;
(2)設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求的面積最大時(shí)直線的方程.
(1);(2)
解析試題分析:(1)由于點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,假設(shè)點(diǎn),再通過,可得一個(gè)關(guān)于與的關(guān)系式,在結(jié)合拋物線方程即可求出.從而求得拋物線的方程.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/a/99zr21.png" style="vertical-align:middle;" />的角平分線與軸垂直,所以可知的傾斜角互補(bǔ),即的斜率互為相反數(shù).所以假設(shè)直線PA,聯(lián)立拋物線方程即可得到點(diǎn)A的坐標(biāo),類比地求出點(diǎn)B的坐標(biāo).結(jié)合韋達(dá)定理,可以得到直線AB的斜率為定值-1.通過假設(shè)直線AB的方程,聯(lián)立拋物線的方程,應(yīng)用點(diǎn)到直線的距離,即可表示三角形的面積.再通過求最值即能到結(jié)論.
試題解析:(1)設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bc/e/hg5xc1.png" style="vertical-align:middle;" />,由拋物線的定義得,又,所以,
因此,解得,從而拋物線的方程為.
(2)由(1)知點(diǎn)的坐標(biāo)為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/a/99zr21.png" style="vertical-align:middle;" />的角平分線與軸垂直,所以可知的傾斜角互補(bǔ),即的斜率互為相反數(shù)
設(shè)直線的斜率為,則,由題意,
把代入拋物線方程得,該方程的解為4、,
由韋達(dá)定理得,即,同理,
所以,
設(shè),把代入拋物線方程得,
由題意,且,從而
又,所以,點(diǎn)到的距離,
因此,設(shè),
則,
由知,所以在上為增函數(shù),因此,
即面積的最大值為.
的面積取最大值時(shí),所以直線的方程為.
考點(diǎn):1.拋物線的性質(zhì).2.函數(shù)的最值.3.等價(jià)變換.4.圓錐曲線與函數(shù)知識(shí)的交匯.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2x+k·2-x,k∈R.
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)k的值;
(2)若對(duì)任意的x∈[0,+∞)都有f(x)>2-x成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點(diǎn)為圓心的兩個(gè)同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設(shè)計(jì)周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對(duì)花壇的邊緣進(jìn)行裝飾時(shí),已知兩條線段的裝飾費(fèi)用為4元/米,兩條弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,當(dāng)為何值時(shí),取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)f(x)=sin2ax-sinaxcosax(a>0)的圖象與直線y=m相切,相鄰切點(diǎn)之間的距離為.
(1)求m和a的值;
(2)若點(diǎn)A(x0,y0)是y=f(x)圖象的對(duì)稱中心,且x0∈,求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某通訊公司需要在三角形地帶區(qū)域內(nèi)建造甲、乙兩種通信信號(hào)加強(qiáng)中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域內(nèi),乙中轉(zhuǎn)站建在區(qū)域內(nèi).分界線固定,且=百米,邊界線始終過點(diǎn),邊界線滿足.
設(shè)()百米,百米.
(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當(dāng)取何值時(shí)?整個(gè)中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象分別與軸相交于兩點(diǎn),且向量(分別是與軸正半軸同方向的單位向量),又函數(shù).
(1)求的值;
(2)若不等式的解集為,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com