【題目】某電影院共有1000個座位,票價不分等次,根據(jù)影院的經(jīng)營經(jīng)驗,當(dāng)每張票價不超過10元時,票可全售出;當(dāng)每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入)
問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?
【答案】(1)(2)當(dāng)每張票定為22元時,放映一場電影的利潤最高,最高為8330元.
【解析】
試題分析:(1)因為影院放映一場電影的成本費用為5750元,所以票房收入必須高于成本費用,所以一張電影票的價格大于,所以一張電影票的最低價格為6元 ,當(dāng)時,票可全售出,y=1000x-5750.當(dāng)每張票價高于10元時,每提高1元,將有30張票不能售出,所以y=x[1000-30(x-10)]-5750=-30x2+1300x-5750,因為,所以,
又∵x為大于10的整數(shù),∴10<x≤38.(2)求分段函數(shù)兩段的最大值,大的即為凈收人最大值。
試題解析:(1)∵影院放映一場電影的成本費用為5750元,票房收入必須高于成本費用,∴票房收入大于5750元,
∵該影院共有l(wèi)000個座位,∴一張電影票的價格大于5.75元,
又∵票價為l元的整數(shù)倍,∴該院一張電影票的最低價格為6元
∵,∴,
又∵x為大于10的整數(shù),∴10<x≤38.
∴;
(2)當(dāng)票價不超過10元時:y=1000x-5750,∵1000>0,
∴隨的增大而增大,∴當(dāng)時,的值最大,
此時(元);
當(dāng)票價高于10元時,y=-30x2+1300x-5750,
∴當(dāng)時,的值最大,
此時(元).
綜上可知,當(dāng)每張票定為22元時,放映一場電影的利潤最高,最高為8330元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的左焦點為,過點的直線交橢圓于,兩點,的最大值為,的最小值為,滿足.
(1)若線段垂直于軸時,,求橢圓的方程;
(2)設(shè)線段的中點為,的垂直平分線與軸和軸分別交于,兩點,是坐標(biāo)原點,記的面積為,的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列命題:
①為偶函數(shù);②的最大值為2;
③在內(nèi)的零點個數(shù)為18;
④的任何一個極大值都大于1.
其中所有正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}和{bn}是兩個等差數(shù)列,記cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs這s個數(shù)中最大的數(shù).
(Ⅰ)若an=n,bn=2n-1,求c1,c2,c3的值,并證明{cn}是等差數(shù)列;
(Ⅱ)證明:或者對任意正數(shù)M,存在正整數(shù)m,當(dāng)n≥m時, >M;或者存在正整數(shù)m,使得cm,cm+1,cm+2,…是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點為,右焦點為,點在橢圓上.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,直線分別與軸交于點,在軸上,是否存在點,使得無論非零實數(shù)怎樣變化,總有為直角?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點為圓上一動點,軸于點,記線段的中點的運動軌跡為曲線.
(1)求曲線的方程;
(2)直線經(jīng)過定點,且與曲線交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,是同一平面內(nèi)的三條平行直線, 與之間的距離是1,與之間的距離是2,三角形的三個頂點分別在,,上.
(1)若為正三角形,求其邊長;
(2)若是以B為直角頂點的直角三角形,求其面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)完成表一中對應(yīng)的值,并在坐標(biāo)系中用描點法作出函數(shù)的圖象:(表一)
0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | |
0.08 | 1.82 | 2.58 |
(2)根據(jù)你所作圖象判斷函數(shù)的單調(diào)性,并用定義證明;
(3)說明方程的根在區(qū)間存在的理由,并從表二中求使方程的根的近似值達到精確度為0.01時運算次數(shù)的最小值并求此時方程的根的近似值,且說明理由.
(表二)二分法的結(jié)果
運算次數(shù)的值 | 左端點 | 右端點 | ||
-0.537 | 0.6 | 0.75 | 0.08 | |
-0.217 | 0.675 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.73125 | 0.011 | |
-0.03 | 0.721875 | 0.73125 | 0.011 | |
-0.01 | 0.7265625 | 0.73125 | 0.011 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com