【題目】在直角坐標系中,過點的直線的參數(shù)方程為:為參數(shù)), 以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線,直線與曲線分別交于兩點.

1)寫出曲線的普通方程;

2)若成等比數(shù)列,求.

【答案】 ,;(21.

【解析】

1)利用互化公式即可將曲線的極坐標方程轉(zhuǎn)化為直角坐標方程;利用代入消元法消去參數(shù),即可得到直線的普通方程;

2)把直線的參數(shù)方程和曲線的直角坐標方程聯(lián)立,根據(jù)韋達定理和參數(shù)的幾何意義分別表示出 ,利用等比中項即可求出的值.

解:(1)∵,∴,

∴曲線的直角坐標方程為:,

為參數(shù)),消去參數(shù),

得直線的普通方程為:.

2)將直線的參數(shù)方程代入中,

,

設(shè)點對應(yīng)的參數(shù)分別為,則,

,

成等比數(shù)列,則,

,

所以,即,

,

,解得:

,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式;

(2)若不等式在R上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.

1)求的表達式,并求函數(shù)的值域

2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個不等實根,求常數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是偶函數(shù),求的值;

2)設(shè)函數(shù),當時,有且只有一個實數(shù)根,求的取值范圍;

3)若關(guān)于的方程在區(qū)間上有兩個不相等的實數(shù)根,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓上有21個點.證明:以這些點為端點組成的所有弧中,不超過120°的弧不少于100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在盒子里有大小相同,僅顏色不同的乒乓球共10個,其中紅球5個,白球3個,藍球2.現(xiàn)從中任取出一球確定顏色后放回盒子里,再取下一個球.重復(fù)以上操作,最多取3次,過程中如果取出藍色球則不再取球.

1)求整個過程中恰好取到2個白球的概率;

2)求取球次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義城為R的函數(shù),若滿足:①;②當,且時,都有;③當時,都有,則稱偏對稱函數(shù)”.下列函數(shù)是偏對稱函數(shù)的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空間中有不共面的個點.求證:存在無窮個平面,恰好通過其中的兩個點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:的右焦點為F,點A(一2,2)為橢圓C內(nèi)一點。若橢圓C上存在一點P,使得|PA|+|PF|=8,則m的取值范圍是( ).

A. B. [9,25] C. D. [3,5]

查看答案和解析>>

同步練習(xí)冊答案