已知函數(shù)在R上是單調(diào)函數(shù),且滿足對任意,都有,若則的值是(    )
A.3B.7 C.9D.12
C

試題分析:根據(jù)題意,因為函數(shù)在R上是單調(diào)函數(shù),那么對于不同的x的取值,對應的y值不同,由于對于任意的,都有,則可知是個常數(shù),那么則設,所以可知有,故選C.
點評:解決該試題的關鍵是利用函數(shù)單調(diào)性和函數(shù)值為常數(shù),說明了函數(shù)f(x)的表達式的特點,然后接合已知條件可知,參數(shù)的值,進而求解函數(shù)值。體現(xiàn)了特殊化思想的運用。屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是定義在上的單調(diào)函數(shù),且對任意的,都有,則方程的解所在的區(qū)間是              (     )
A.   B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)的圖象如圖所示,且與軸相切于原點,若函數(shù)的極小值為-4.

(1)求的值;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知上是減函數(shù),那么(   )
A.有最小值9B.有最大值9C.有最小值-9D.有最大值-9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)的定義域為R,當時,,且對任意的實數(shù)R,等式成立.若數(shù)列滿足,且 (),則的值為(      )
A.4024B.4023C.4022D.4021

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知命題P:函數(shù)R上的減函數(shù),命題Q:在 時,不等式恒成立,若命題“”是真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù) ,的導數(shù).
(1)當時,求的單調(diào)區(qū)間和極值;
(2)設,是否存在實數(shù),對于任意的,存在,使得成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分) 已知函數(shù)f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)圖象上與原點最近的對稱中心的坐標;
(3)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

同步練習冊答案