【題目】設函數f(x)=lnx+ax2+x+1.
(I)a=﹣2時,求函數f(x)的極值點;
(Ⅱ)當a=0時,證明xex≥f(x)在(0,+∞)上恒成立.
【答案】(1) x=1是f(x)的極大值點,無極小值點(2)詳見解析
【解析】試題分析:(1)求導數判斷函數的單調性,通過單調性求極值點;(2)當a=0時構造函數F(x)=xex﹣f(x)=xex﹣lnx﹣x﹣1,(x>0),只要證明F(x)≥=0即可。
試題解析:
(Ⅰ)由題意得函數的定義域為(0,+∞),
∵ f(x)=lnx+ax2+x+1,
∴f′(x)=﹣2x+1=,
令f′(x)>0,解得0<x<1;令f′(x)<0,解得x>1,
∴f(x)在(0,1)上單調遞增,在(1,+∞)上單調遞減,
∴x=1是函數f(x)的極大值點,無極小值點;
(Ⅱ)證明:當a=0時,f(x)=lnx+x+1
令F(x)=xex﹣f(x)=xex﹣lnx﹣x﹣1,(x>0),
則F′(x)= (xex﹣1),
令G(x)=xex﹣1,
則G′(x)=(x+1)ex>0,(x>0),
∴函數G(x)在(0,+∞)遞增,
又G(0)=﹣1<0,G(1)=e﹣1>0,
∴存在唯一c∈(0,1)使得G(c)=0,
且F(x)在(0,c)上單調遞減,在(c,+∞)上單調遞增,
故F(x)≥F(c)=cec﹣lnc﹣c﹣1,
由G(c)=0,得cec﹣1=0,得lnc+c=0,
∴F(c)=0,
∴F(x)≥F(c)=0,
從而證得xex≥f(x).
科目:高中數學 來源: 題型:
【題目】給定橢圓C: =1(a>b>0).設t>0,過點T(0,t)斜率為k的 直線l與橢圓C交于M,N兩點,O為坐標原點.
(Ⅰ)用a,b,k,t表示△OMN的面積S,并說明k,t應滿足的條件;
(Ⅱ)當k變化時,求S的最大值g(t).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人約定在下午 4:30:5:00 間在某地相見,且他們在 4:30:5:00 之間 到達的時刻是等可能的,約好當其中一人先到后一定要等另一人 20 分鐘,若另一人仍不到則可以離去,則這兩人能相見的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.
(1)求角B的大。
(2)若△ABC的面積為,求sinA+sinC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
如圖,已知四棱錐,底面為菱形,,
, 平面, 分別是的中點。
(1)證明: ;
(2)若為上的動點,與平面所成最大角
的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用紅、黃、藍三種不同顏色給圖中3個矩形隨機涂色,每個矩形只涂一種顏色,求:
(1)3個矩形顏色都相同的概率;
(2)3個矩形顏色都不同的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子中裝有4個編號依次為1、2、3、4的球,這4個球除號碼外完全相同,先從盒子中隨機取一個球,該球的編號為X,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為Y
(1)列出所有可能結果.
(2)求事件A=“取出球的號碼之和小于4”的概率.
(3)求事件B=“編號X<Y”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且滿足a1= ,2Sn﹣SnSn﹣1=1(n≥2).
(1)猜想Sn的表達式,并用數學歸納法證明;
(2)設bn= ,n∈N* , 求bn的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com