如圖,在四面體PABC中,PC⊥AB,PA⊥BC,點(diǎn)D,E,F,G分別是棱AP,AC,BC,PB的中點(diǎn).
(1)求證:DE∥平面BCP.
(2)求證:四邊形DEFG為矩形.
(3)是否存在點(diǎn)Q,到四面體PABC六條棱的中點(diǎn)的距離相等?說明理由.
(1)見解析 (2)見解析 (3)存在,理由見解析
解析證明:(1)因?yàn)镈,E分別為AP,AC的中點(diǎn),
所以DE∥PC.
又因?yàn)镈E?平面BCP,所以DE∥平面BCP .
(2)因?yàn)镈,E,F,G分別為AP,AC,BC,PB的中點(diǎn),
所以DE∥PC∥FG,
DG∥AB∥EF,
所以四邊形DEFG為平行四邊形.
又因?yàn)镻C⊥AB,所以DE⊥DG,
所以四邊形DEFG為矩形.
(3)解:存在點(diǎn)Q滿足條件,理由如下:
連接DF,EG,設(shè)Q為EG的中點(diǎn).
由(2)知,DF∩EG=Q,且QD=QE=QF=QG=EG.
分別取PC,AB的中點(diǎn)M,N,連接ME,EN,NG,MG,MN.
與(2)同理,可證四邊形MENG為矩形,其對角線交點(diǎn)為EG的中點(diǎn)Q,
且QM=QN=EG,
所以Q為滿足條件的點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的多面體中,四邊形為正方形,四邊形是直角梯形,,平面,.
(1)求證:平面;
(2)求平面與平面所成的銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱的底面是邊長為2的正三角形,且側(cè)棱垂直于底面,側(cè)棱長是,D是AC的中點(diǎn)。
(1)求證:平面;
(2)求二面角的大小;
(3)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分別為PB,AB,BC,PD,PC的中點(diǎn)
(1)求證:CE∥平面PAD;
(2)求證:平面EFG⊥平面EMN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱中,D、E分別是BC和的中點(diǎn),已知AB=AC=AA1=4,ÐBAC=90°.
(1)求證:⊥平面;
(2)求二面角的余弦值;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱錐PABCD的底面為正方形,側(cè)棱PA⊥底面ABCD,且PA=AD=2,E,F,H分別是線段PA,PD,AB的中點(diǎn).
(1)求證:PB∥平面EFH;
(2)求證:PD⊥平面AHF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖①,E、F分別是直角三角形ABC邊AB和AC的中點(diǎn),∠B=90°,沿EF將三角形ABC折成如圖②所示的銳二面角A1EFB,若M為線段A1C中點(diǎn).求證:
(1)直線FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在正方體ABCDA1B1C1D1中,E、F、G、H分別是BC、CC1、C1D1、A1A的中點(diǎn).求證:
(1)BF∥HD1;
(2)EG∥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點(diǎn),F是AB的中點(diǎn),AC=BC=1,AA1=2.
(1)求證:CF∥平面AB1E;
(2)求三棱錐C-AB1E在底面AB1E上的高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com