如圖①,E、F分別是直角三角形ABC邊AB和AC的中點(diǎn),∠B=90°,沿EF將三角形ABC折成如圖②所示的銳二面角A1EFB,若M為線段A1C中點(diǎn).求證:
(1)直線FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面是邊長(zhǎng)為1的正方形,,點(diǎn)E在棱PB上.
(1)求證:平面;
(2)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB
所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在等腰直角三角形中, =900 ,="6," 分別是,上的點(diǎn), 為的中點(diǎn).將沿折起,得到如圖所示的四棱椎,其中
(1)證明:;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四面體PABC中,PC⊥AB,PA⊥BC,點(diǎn)D,E,F,G分別是棱AP,AC,BC,PB的中點(diǎn).
(1)求證:DE∥平面BCP.
(2)求證:四邊形DEFG為矩形.
(3)是否存在點(diǎn)Q,到四面體PABC六條棱的中點(diǎn)的距離相等?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點(diǎn)E、G分別是棱SA、
SC的中點(diǎn).求證:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=AD=2,CD=3,直線PA與底面ABCD所成角為60°,點(diǎn)M、N分別是PA、PB的中點(diǎn).求證:
(1)MN∥平面PCD;
(2)四邊形MNCD是直角梯形;
(3)DN⊥平面PCB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求證:
(1)BF∥平面ACE;
(2)BF⊥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A是△BCD平面外的一點(diǎn),E,F(xiàn)分別是BC,AD的中點(diǎn).
(1)求證:直線EF與BD是異面直線;
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱中,,點(diǎn)是的中點(diǎn)。
(1)求證:∥平面
(2)如果點(diǎn)是的中點(diǎn),求證:平面平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com