【題目】如圖,在極坐標(biāo)系中,,,弧,,所在圓的圓心分別為,,,曲線是弧,曲線是弧,曲線是弧.
(1)寫(xiě)出曲線,,的極坐標(biāo)方程;
(2)曲線由,,構(gòu)成,若曲線的極坐標(biāo)方程為(,,,),寫(xiě)出曲線與曲線的所有公共點(diǎn)(除極點(diǎn)外)的極坐標(biāo).
【答案】(1):,; :,;
: ,;(2),,.
【解析】
(1)先求出曲線,,的直角坐標(biāo)方程,再化為極坐標(biāo)方程即可;
(2)將,,分別代入,,的極坐標(biāo)方程得到對(duì)應(yīng)的極徑,然后寫(xiě)出極坐標(biāo)即可.
(1)在以O為原點(diǎn)的平面直角坐標(biāo)系中,曲線,,的方程為:
:();
:();
: ();
則它們的極坐標(biāo)方程分別為:
:,;
:,;
: ,;
(2)將,,分別代入,,的極坐標(biāo)方程,得:
,,,
則曲線M與的所有公共點(diǎn)(除極點(diǎn)外)的極坐標(biāo)分別為:
,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成的三角形面積為.
(I)求橢圓的方程;
(II)設(shè)與圓相切的直線交橢圓于,兩點(diǎn)(為坐標(biāo)原點(diǎn)),的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:,過(guò)右焦點(diǎn)F的直線l與橢圓E交于A,B兩點(diǎn)(A,B兩點(diǎn)不在x軸上),橢圓E在A,B兩點(diǎn)處的切線交于P,點(diǎn)P在定直線上.
(1)記點(diǎn),求過(guò)點(diǎn)與橢圓E相切的直線方程;
(2)以為直徑的圓過(guò)點(diǎn)F,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐,底面為矩形,側(cè)面平面,.,若點(diǎn)M為的中點(diǎn),則下列說(shuō)法正確的個(gè)數(shù)為( )
(1)平面 (2)四棱錐的體積為12
(3)平面 (4)四棱錐外接球的表面積為
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)設(shè)曲線與軸正半軸交于點(diǎn),求曲線在該點(diǎn)處的切線方程;
(Ⅱ)設(shè)方程有兩個(gè)實(shí)數(shù)根,,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,圖中直棱柱的底面是菱形,其中.又點(diǎn)分別在棱上運(yùn)動(dòng),且滿足:,.
(1)求證:四點(diǎn)共面,并證明∥平面.
(2)是否存在點(diǎn)使得二面角的余弦值為?如果存在,求出的長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的離心率為,過(guò)右焦點(diǎn)且垂直于長(zhǎng)軸的直線與橢圓C交于P,Q兩點(diǎn),且.
(1)求橢圓C的方程;
(2)A,B是橢圓C上的兩個(gè)不同點(diǎn),若直線,的斜率之積為(以O為坐標(biāo)原點(diǎn)),M是的中點(diǎn),連接并延長(zhǎng)交橢圓C于點(diǎn)N,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,,為自然對(duì)數(shù)的底數(shù).
若,,①若函數(shù)單調(diào)遞增,求實(shí)數(shù)的取值范圍;②若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
若,且存在兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線:,過(guò)直線上一點(diǎn)作直線交拋物線于,兩點(diǎn),且點(diǎn)為中點(diǎn)、作直線交軸于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com