【題目】在平面直角坐標(biāo)系xOy中,橢圓的離心率為,橢圓上動(dòng)點(diǎn)到一個(gè)焦點(diǎn)的距離的最小值為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過(guò)點(diǎn)的動(dòng)直線l與橢圓C交于 A,B 兩點(diǎn),試判斷以AB為直徑的圓是否恒過(guò)定點(diǎn),并說(shuō)明理由.
【答案】(1)(2)存在以AB為直徑的圓恒過(guò)定點(diǎn)T,且定點(diǎn)T的坐標(biāo)為.
【解析】
試題分析:(1)根據(jù)橢圓的離心率為,橢圓上動(dòng)點(diǎn)到一個(gè)焦點(diǎn)的距離的最小值為,結(jié)合 ,列出關(guān)于 、 、的方程組,求出 、 、即可得結(jié)果;(2)設(shè)過(guò)點(diǎn)的直線 的方程為與橢圓交于,則整理得,根據(jù)韋達(dá)定理及平面向量數(shù)量積公式可將表示為的函數(shù),消去可得,從而可得,存在以為直徑的圓恒過(guò)定點(diǎn) ,且定點(diǎn)的坐標(biāo)為.
試題解析:(1)由題意,故, 又橢圓上動(dòng)點(diǎn)到一個(gè)焦點(diǎn)的距離的最小值為,所以,解得,,所以, 所以橢圓C的標(biāo)準(zhǔn)方程為.
(2)當(dāng)直線l的斜率為0時(shí),令,則,此時(shí)以AB為直徑的圓的方程為.
當(dāng)直線l的斜率不存在時(shí),以AB為直徑的圓的方程為, 聯(lián)立解得,即兩圓過(guò)點(diǎn).
猜想以AB為直徑的圓恒過(guò)定點(diǎn).
對(duì)一般情況證明如下:
設(shè)過(guò)點(diǎn)的直線l的方程為與橢圓C交于,
則整理得,
所以.
因?yàn)?/span>
,
所以.
所以存在以AB為直徑的圓恒過(guò)定點(diǎn)T,且定點(diǎn)T的坐標(biāo)為.
【方法點(diǎn)晴】本題主要考查待定系數(shù)法求橢圓標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系以及曲線過(guò)定點(diǎn)問(wèn)題,屬于難題.解決曲線過(guò)定點(diǎn)問(wèn)題一般有兩種方法:① 探索曲線過(guò)定點(diǎn)時(shí),可設(shè)出曲線方程 ,然后利用條件建立等量關(guān)系進(jìn)行消元,借助于曲線系的思想找出定點(diǎn),或者利用方程恒成立列方程組求出定點(diǎn)坐標(biāo).② 從特殊情況入手,先探求定點(diǎn),再證明與變量無(wú)關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)M(0,-1),直線l經(jīng)過(guò)點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.已知曲線: (為參數(shù)), :(為參數(shù)).
(1)化,的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)直線的極坐標(biāo)方程為,若上的點(diǎn)對(duì)應(yīng)的參數(shù)為,為上的動(dòng)點(diǎn),求線段的中點(diǎn)到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中正確的個(gè)數(shù)是( )
①正三棱錐的頂點(diǎn)在底面的射影到底面各頂點(diǎn)的距離相等;
②有兩個(gè)側(cè)面是矩形的棱柱是直棱柱;
③兩個(gè)底畫平行且相似的多面體是棱臺(tái);
④底面是正三角形,其余各面都是等腰三角形的三棱錐一定是正三棱錐.
A.0B.1C.5D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)為了計(jì)算函數(shù)圖象與x軸,直線,所圍成形狀A(yù)的面積,采用“隨機(jī)模擬方法”,用計(jì)算機(jī)分別產(chǎn)生10個(gè)在上的均勻隨機(jī)數(shù)和10個(gè)在上的均勻隨機(jī)數(shù),其數(shù)據(jù)記錄為如下表的前兩行.
2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 | |
0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 | |
0.92 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
(1)依據(jù)表格中的數(shù)據(jù)回答,在圖形A內(nèi)的點(diǎn)有多少個(gè),分別是什么?
(2)估算圖形A的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解該校多媒體教學(xué)普及情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該校50名教師,他們的年齡頻數(shù)及使用多媒體教學(xué)情況的人數(shù)分布如下表:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為以40歲為分界點(diǎn)對(duì)是否經(jīng)常使用多媒體教學(xué)有差異?
附:,.
(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用多媒體的教師中選出6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人中至少有1人年齡在30-39歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,為參數(shù),且.
(Ⅰ)當(dāng)時(shí),判斷函數(shù)是否有極值.
(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍.
(Ⅲ)若對(duì)(Ⅱ)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知為異面直線,平面平面.直線滿足,則( )
A. ,且 B. ,且
C. 與相交,且交線垂直于 D. 與相交,且交線平行于
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com