【題目】已知函數(shù)為奇函數(shù),則下列敘述正確的有(

A.B.函數(shù)在定義域上是單調(diào)增函數(shù)

C.D.函數(shù)所有零點(diǎn)之和大于零

【答案】ABC

【解析】

A:由為奇函數(shù)且在0處有定義,代,解得m,成立;

B:由基本初等函數(shù)確定單調(diào)性,再由單調(diào)性性質(zhì)變換得單調(diào)性,成立;

C:利用換元法,求得的值域,成立;

D:利用函數(shù)奇偶性的性質(zhì),圖像關(guān)于原點(diǎn)對稱,交點(diǎn)也對稱,其橫坐標(biāo)之和為零,錯誤.

因為函數(shù)為奇函數(shù)

所以,解得,

A選項正確;

因此

又因為在定義域上是單調(diào)增函數(shù),所以為單調(diào)減函數(shù)

在定義域上是單調(diào)增函數(shù),

B選項正確;

,所以上的值域為

故選項C正確;

函數(shù)所有零點(diǎn)可以轉(zhuǎn)化為的兩個函數(shù)的交點(diǎn)的橫坐標(biāo)

因為都為奇函數(shù),所以若有交點(diǎn)必然關(guān)于原點(diǎn)對稱,那么其和應(yīng)等于零

故選項D錯誤.

故選:ABC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣axlnx.

(1)當(dāng)a=1時,求曲線f(x)在x=1處的切線方程;

(2)證明:對于a∈(0,e),函數(shù)f(x)在區(qū)間()上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年8月8日是我國第十個全民健身日,其主題是:新時代全民健身動起來。某市為了解全民健身情況,隨機(jī)從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。

(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計值;

(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;

(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計該小區(qū)年齡不超過80歲的成年人人數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn)每一噸產(chǎn)品所需的勞動力和煤、電耗如下表:

產(chǎn)

千瓦

A產(chǎn)

3

9

4

B產(chǎn)

10

4

5

已知生產(chǎn)每噸A產(chǎn)品的利潤是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤是12萬元,現(xiàn)在條件有限,該企業(yè)僅有勞動力300個,煤360噸,并且供電局只能供電200千瓦,試問:該企業(yè)生產(chǎn)AB兩種產(chǎn)品各多少噸,才能獲得最大利潤?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,bc,且abc=8.

(1)若a=2,b,求cosC的值;

(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面積SsinC,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)在區(qū)間上的最大值和最小值之和為6,求實數(shù)的值;

2)設(shè)函數(shù),若函數(shù)在區(qū)間上恒有零點(diǎn),求實數(shù)的取值范圍;

3)在問題(2)中,令,比較0的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若對任意的,都存在,使得,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時銀行所獲得的最大經(jīng)濟(jì)效益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計劃在空地上修建一個矩形的活動場地OCDE及一矩形停車場EFGH,剩余的地方進(jìn)行綠化.若,設(shè)

(Ⅰ)記活動場地與停車場占地總面積為,求的表達(dá)式;

(Ⅱ)當(dāng)為何值時,可使活動場地與停車場占地總面積最大.

查看答案和解析>>

同步練習(xí)冊答案