【題目】2018年8月8日是我國第十個全民健身日,其主題是:新時代全民健身動起來。某市為了解全民健身情況,隨機從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。
(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計值;
(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;
(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計該小區(qū)年齡不超過80歲的成年人人數(shù)。
【答案】(1) 平均數(shù)37,中位數(shù)為35;(2) (。;(ⅱ)該小區(qū)年齡不超過80歲的成年人人數(shù)約為2000×0.88=1760.
【解析】
(1)每個矩形的中點橫坐標(biāo)與該矩形的縱坐標(biāo)相乘后求和可得平均值;直方圖左右兩邊面積相等處橫坐標(biāo)表示中位數(shù);(2)(ⅰ)從6人中任選2人共有15個基本事件,至少有1人年齡不低于60歲的共有9個基本事件,由古典概型概率公式可得結(jié)果;(ⅱ)樣本中年齡在18歲以上的居民所占頻率為1-(18-10)×0.015=0.88.
(1)平均數(shù).
前三組的頻率之和為0.15+0.2+0.3=0.65,故中位數(shù)落在第3組,設(shè)中位數(shù)為x,
則(x-30)×0.03+0.15+0.2=0.5,解得x=35,即中位數(shù)為35.
(2)(。颖局,年齡在[50,70)的人共有40×0.15=6人,其中年齡在[50,60)的有4人,設(shè)為a,b,c,d,年齡在[60,70)的有2人,設(shè)為x,y.
則從中任選2人共有如下15個基本事件:(a,b),(a,c),(a,d),(a,x),(a,y),(b,c),(b,d),(b,x),(b,y),(c,d),(c,x),(c,y),(d,x),(d,y),(x,y).
至少有1人年齡不低于60歲的共有如下9個基本事件:
(a,x),(a,y),(b,x),(b,y),(c,x),(c,y),(d,x),(d,y),(x,y).
記“這2人中至少有1人年齡不低于60歲”為事件A,
故所求概率.
(ⅱ)樣本中年齡在18歲以上的居民所占頻率為1-(18-10)×0.015=0.88,
故可以估計,該小區(qū)年齡不超過80歲的成年人人數(shù)約為2000×0.88=1760.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓柱的直徑,是圓柱的母線,,,點是圓柱底面圓周上的點.
(1)求三棱錐體積的最大值;
(2)若,是線段上靠近點的三等分點,點是線段上的動點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),且當(dāng)時,.若關(guān)于x的不等式只有兩個整數(shù)解,則實數(shù)a的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點、,動點在軸上的射影是,且.
(1)求動點的軌跡方程;
(2)設(shè)直線、的兩個斜率存在,分別記為、,若,求點的坐標(biāo);
(3)若經(jīng)過點的直線與動點的軌跡有兩個交點、,當(dāng)時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為.以極點為原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)判斷直線與曲線的位置關(guān)系,并說明理由;
(2)若直線和曲線相交于,兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),則下列敘述正確的有( )
A.B.函數(shù)在定義域上是單調(diào)增函數(shù)
C.D.函數(shù)所有零點之和大于零
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a,.
(1)當(dāng),時,求函數(shù)的零點;
(2)當(dāng)時,解關(guān)于x的不等式;
(3)如果函數(shù)的圖象恒在直線的上方,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com