(本題滿分14分)已知+=1的焦點F1、F2,在直線l:x+y-6=0上找一點M,求以F1、F2為焦點,通過點M且長軸最短的橢圓方程.

解:由,得F1(2,0),F(xiàn)2(-2,0)   (3分)
F1關于直線l的對稱點F1/(6,4)    (4分)
,連F1/F2交l于一點,即為所求的點M,∴2a=|MF1|+|MF2|=|F1/F2|=4,a=2(4分)
∴,又c=2,∴b2=16,             (4分)
故所求橢圓方程為.    (3分)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線與橢圓的交點分別為.

(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為,證明
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為,過焦點且不平行于軸的動直線交拋物線于,兩點,拋物線在、兩點處的切線交于點

(Ⅰ)求證:,三點的橫坐標成等差數(shù)列;
(Ⅱ)設直線交該拋物線于,兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)設橢圓的中心是坐標原點,長軸在x軸上,離心率e=,已知點P(0,)到這個橢圓上的點的最遠距離是,求這個橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線的焦點,
離心率等于.直線與橢圓C交于兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 橢圓C的右焦點是否可以為的垂心?若可以,求出直線的方程;
若不可以,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知點是圓上任意一點,點與點關于原點對稱。線段的中垂線分別與交于兩點.
(1)求點的軌跡的方程;
(2)斜率為的直線與曲線交于兩點,若為坐標原點),試求直線上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的方程為,點分別為其左、右頂點,點分別為其左、右焦點,以點為圓心,為半徑作圓;以點為圓心,為半徑作圓;若直線被圓和圓截得的弦長之比為;
(1)求橢圓的離心率;
(2)己知,問是否存在點,使得過點有無數(shù)條直線被圓和圓截得的弦長之比為;若存在,請求出所有的點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

根據(jù)我國汽車制造的現(xiàn)實情況,一般卡車高3 m,寬1.6 m.現(xiàn)要設計橫斷面為拋物線型的雙向二車道的公路隧道,為保障雙向行駛安全,交通管理規(guī)定汽車進入隧道后必須保持距中線0.4 m的距離行駛.已知拱口AB寬恰好是拱高OC的4倍,若拱寬為a m,求能使卡車安全通過的a的最小整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

曲線的極坐標方程化為直角坐標為(   )

A. B.
C. D.

查看答案和解析>>

同步練習冊答案