(本小題滿分14分)
已知點是圓上任意一點,點與點關(guān)于原點對稱。線段的中垂線分別與交于兩點.
(1)求點的軌跡的方程;
(2)斜率為的直線與曲線交于兩點,若為坐標(biāo)原點),試求直線上截距的取值范圍.

解:(1)由題意得,的半徑為,且 ……… 1分
從而 ………… 3分

∴ 點M的軌跡是以為焦點的橢圓,  ………… 5分
其中長軸,得到,焦距
則短半軸
橢圓方程為:    ………… 6分
(2)設(shè)直線l的方程為,由 
可得
,即    ①   ………… 8分
設(shè),則
可得,即   …………10分
整理可得        …………12分

化簡可得,代入①整理可得,
故直線在y軸上截距的取值范圍是.   …………14分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形.
(1)求橢圓的方程;
(2)動直線交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T。若存在,求出點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知+=1的焦點F1、F2,在直線l:x+y-6=0上找一點M,求以F1、F2為焦點,通過點M且長軸最短的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知是橢圓的兩個焦點,是橢圓上的點,且
(1)求的周長;   
(2)求點的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點的雙曲線C的右焦點為(2,0),實軸長為2.
(1)求雙曲線C的方程;
(2)若直線lykx+與雙曲線C左支交于A、B兩點,求k的取值范圍;
(3)在(2)的條件下,線段AB的垂直平分線l0y軸交于M(0,m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

極坐標(biāo)系中,由三條曲線圍成的圖形的面積是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)求與雙曲線有共同漸近線,并且經(jīng)過點 (-3,)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心是坐標(biāo)原點,焦點在坐標(biāo)軸上,且橢圓過點三點.
(1)求橢圓的方程;
(2)若點為橢圓上不同于的任意一點,,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)如果正△ABC中,D∈AB,E∈AC,向量,求以B,C為焦點且過點D,E的雙曲線的離心

查看答案和解析>>

同步練習(xí)冊答案