四面體的六條棱中,有五條棱長都等于a.
(Ⅰ)求該四面體的體積的最大值;
(Ⅱ)當四面體的體積最大時,求其表面積.

解:(Ⅰ)如圖,
在四面體ABCD中,設(shè)AB=BC=CD=AC=BD=a,AD=x,取AD的中點為P,
BC的中點為E,連接BP、EP、CP.
∵AB=BD,P為AD中點,∴BP⊥AD,
∵AC=CD,P為AD中點,∴PC⊥AD,
又BP∩PC=P,∴AD⊥平面BPC,
∴VA-BCD=VA-BPC+VD-BPC
=S△BPC•AP+S△BPC•PD
=S△BPC•AD
=וx
==a3(當且僅當x=a時取“=”).
∴該四面體的體積的最大值為a3
(Ⅱ)由(1)知,△ABC和△BCD都是邊長為a的正三角形,
△ABD和△ACD是全等的等腰三角形,其腰長為a,底邊長為a,
∴S△ABC=S△BCD=,
S△ABD=S△ACD==
所以當四面體的體積最大時,其表面積S==a2
分析:(Ⅰ)設(shè)出四面體A-BCD,不妨設(shè)棱AB、AC、BC、BD、CD相等且為定值a,把棱AD看作動的棱,設(shè)為x,取AD的中點P,
連接BP、CP后,四面體A-BCD分成了兩個同底面的三棱錐A-BPC和D-BPC,四面體的體積轉(zhuǎn)化為此兩個三棱錐的體積和,整理后化為關(guān)于x的函數(shù),然后運用基本不等式求四面體體積的最大值.
(Ⅱ)求出使四面體體積最大時的x的值,四面體的表面積就是表面四個三角形的面積和,可直接運用三角形的面積求解.
點評:本題考查了棱錐的體積和表面積,考查了學生的空間想象能力和數(shù)學轉(zhuǎn)化能力,考查了函數(shù)思想,運用了基本不等式求函數(shù)的最值,此題是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

四面體的六條棱中,有五條棱長都等于a,則該四面體的體積的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四面體的六條棱中,有五條棱長都等于a,則該四面體體積的最大值為
1
8
a3
1
8
a3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四面體的六條棱中,有五條棱長都等于a.
(Ⅰ)求該四面體的體積的最大值;
(Ⅱ)當四面體的體積最大時,求其表面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

四面體的六條棱中,有五條棱長都等于a,則該四面體的體積的最大值為(  )
A.
3
8
a3
B.
2
8
a3
C.
1
8
a3
D.
1
12
a3

查看答案和解析>>

科目:高中數(shù)學 來源:2013年高考數(shù)學壓軸小題訓練:三棱錐的計算問題(解析版) 題型:填空題

四面體的六條棱中,有五條棱長都等于a,則該四面體體積的最大值為   

查看答案和解析>>

同步練習冊答案