【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知圓的參數(shù)方程為為參數(shù)),直線的直角坐標(biāo)方程為.

1)求圓的普通方程和直線的極坐標(biāo)方程;

2)設(shè)圓和直線交于兩點(diǎn),求的面積.

【答案】1;;(2.

【解析】

1)由圓的參數(shù)方程加消去參數(shù),即可得到圓的普通方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可求得直線的極坐標(biāo)方程;

2)由(1)得圓的圓心坐標(biāo)和半徑,求得圓心到直線的距離及圓的弦長(zhǎng),利用三角形的面積公式,即可求解.

1)由圓的參數(shù)方程為參數(shù))可化為為參數(shù)),

平方相加消去參數(shù),可得圓的普通方程為,

,代入直線,

可得直線的極坐標(biāo)方程為.

2)由(1)知圓的圓心為,半徑為1,

則圓心到直線的距離為,

由圓的弦長(zhǎng)公式,可得,

所以的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)詩(shī)詞大會(huì)的播出引發(fā)了全民讀書(shū)熱,某學(xué)校語(yǔ)文老師在班里開(kāi)展了一次詩(shī)詞默寫(xiě)比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如右圖,若規(guī)定得分不低于85分的學(xué)生得到“詩(shī)詞達(dá)人”的稱號(hào),低于85分且不低于70分的學(xué)生得到“詩(shī)詞能手”的稱號(hào),其他學(xué)生得到“詩(shī)詞愛(ài)好者”的稱號(hào).根據(jù)該次比賽的成績(jī)按照稱號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩(shī)詞能手”稱號(hào)的人數(shù)為(  )

A. 6B. 5C. 4D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)(1)處的切線方程為

1)求函數(shù)的解析式,并證明:

2)已知,且函數(shù)與函數(shù)的圖象交于,,,兩點(diǎn),且線段的中點(diǎn)為,證明:(1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCDA1B1C1D1中,E、FG分別為AA1、BCC1D1的中點(diǎn),現(xiàn)有下面三個(gè)結(jié)論:①△EFG為正三角形;②異面直線A1GC1F所成角為60°;③AC∥平面EFG.其中所有正確結(jié)論的編號(hào)是(

A.B.②③C.①②D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)為自然對(duì)數(shù)的底數(shù),),函數(shù),給出下列結(jié)論:

①函數(shù)的圖象在處的切線在軸的截距為

②函數(shù)是奇函數(shù),且在上單調(diào)遞增;

③函數(shù)存在唯一的極小值點(diǎn),其中,且

④函數(shù)存在兩個(gè)極小值點(diǎn),和兩個(gè)極大值點(diǎn).

其中所有正確結(jié)論的序號(hào)是(

A.①②③B.①④C.①③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD是矩形,A1DAD1交于點(diǎn)E,AA1AD2AB4.

1)證明:AE⊥平面ECD.

2)求點(diǎn)C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo),直線經(jīng)過(guò)點(diǎn),且傾斜角為.

1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的標(biāo)準(zhǔn)參數(shù)方程;

2)直線與曲線交于兩點(diǎn),直線的參數(shù)方程為t為參數(shù)),直線與曲線交于兩點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中a為正實(shí)數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個(gè)極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn,且S1,S2S4成等比數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)令,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案