【題目】已知等差數(shù)列{an}的公差為2,前n項和為Sn,且S1,S2,S4成等比數(shù)列.

1)求數(shù)列{an}的通項公式;

2)令,求數(shù)列{bn}的前n項和Tn.

【答案】1an2n1;(2Tn

【解析】

1)根據(jù)等差數(shù)列的求和公式表示出S1S2,S4,然后利用S1,S2,S4成等比數(shù)列可得首項,從而可得數(shù)列{an}的通項公式;

2)先求出,然后利用裂項相消法求數(shù)列{bn}的前n項和Tn.

1)因為S1a1,S22a1×22a12,S44a1×24a112,由題意得S1S4,即(2a12)2a1(4a112),解得a11,所以an2n1.

2)由題意可知.

n為偶數(shù)時,

n為奇數(shù)時,

所以Tn.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點,軸的正半軸為極軸,兩個坐標系取相等的長度單位.已知圓的參數(shù)方程為為參數(shù)),直線的直角坐標方程為.

1)求圓的普通方程和直線的極坐標方程;

2)設圓和直線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題的展開式中,僅有第7項的二項式系數(shù)最大,則展開式中的常數(shù)項為495;命題隨機變量服從正態(tài)分布,且,則.現(xiàn)給出四個命題:,,,其中真命題的是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調査.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內,按,,,分成6組,其頻率分布直方圖如圖所示.

(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);

(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的列聯(lián)表,并判斷有多大把握認為“網(wǎng)購迷與性別有關系”;

合計

網(wǎng)購迷

20

非網(wǎng)購迷

45

合計

100

(3)調査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨立,兩人網(wǎng)購時間與次數(shù)也互不. 影響.統(tǒng)計最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:

網(wǎng)購總次數(shù)

支付寶支付次數(shù)

銀行卡支付次數(shù)

微信支付次數(shù)

80

40

16

24

90

60

18

12

將頻率視為概率,若甲、乙兩人在下周內各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學期望.

附:觀測值公式:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在《周髀算經(jīng)》中,把圓及其內接正方形稱為圓方圖,把正方形及其內切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設計和建筑領域有著廣泛的應用.山西應縣木塔是我國現(xiàn)存最古老、最高大的純木結構樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以塔底座的邊作方形.作方圓圖,會發(fā)現(xiàn)方圓的切點正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點的距離不超過米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且離心率

(1)求橢圓方程;

(2)若直線與橢圓交于不同的兩點,且線段的垂直平分線過定點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,,,點分別為棱,的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓周率是一個在數(shù)學及物理學中普遍存在的數(shù)學常數(shù),它既常用又神秘,古今中外很多數(shù)學家曾研究它的計算方法.下面做一個游戲:讓大家各自隨意寫下兩個小于1的正數(shù)然后請他們各自檢查一下,所得的兩數(shù)與1是否能構成一個銳角三角形的三邊,最后把結論告訴你,只需將每個人的結論記錄下來就能算出圓周率的近似值.假設有個人說“能”,而有個人說“不能”,那么應用你學過的知識可算得圓周率的近似值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,點E是棱的中點,點F是線段上的一個動點.有以下三個命題:

①異面直線所成的角是定值;

②三棱錐的體積是定值;

③直線與平面所成的角是定值.

其中真命題的個數(shù)是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

同步練習冊答案