【題目】記max{m,n}= ,設(shè)F(x,y)=max{|x2+2y+2|,|y2﹣2x+2|},其中x,y∈R,則F(x,y)的最小值是

【答案】1
【解析】解:∵|x2+2y+2|=|(x﹣1)2+2(x+y)+1|,|y2﹣2x+2|=|(y+1)2﹣2(x+y)+1|,
若x+y>0,則|(x﹣1)2+2(x+y)+1|>1,
則F(x,y)>1,
若x+y<0,則|(y+1)2﹣2(x+y)+1|>1,
則F(x,y)>1;
而當(dāng) ,即x=1,y=﹣1時(shí),
F(x,y)=1,
故F(x,y)的最小值是1.
所以答案是:1.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的最值及其幾何意義,需要了解利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍艿贸稣_答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一袋中有大小相同的4個(gè)紅球和2個(gè)白球,給出下列結(jié)論:

①?gòu)闹腥稳?/span>3球,恰有一個(gè)白球的概率是;

②從中有放回的取球6次,每次任取一球,則取到紅球次數(shù)的方差為;

③現(xiàn)從中不放回的取球2次,每次任取1球,則在第一次取到紅球的條件下,第二次再次取到紅球的概率為

④從中有放回的取球3次,每次任取一球,則至少有一次取到紅球的概率為.

其中所有正確結(jié)論的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若曲線(xiàn)C的極坐標(biāo)方程為ρsin2θ+4sinθ﹣ρ=0,直線(xiàn)l: (t為參數(shù))過(guò)曲線(xiàn)C的焦點(diǎn),且與曲線(xiàn)C交于M,N兩點(diǎn).
(1)寫(xiě)出曲線(xiàn)C及直線(xiàn)l直角坐標(biāo)方程;
(2)求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與雙曲線(xiàn)有相同的焦點(diǎn),點(diǎn)是曲線(xiàn)的一個(gè)公共點(diǎn),,分別是的離心率,若,則的最小值為( )

A. B. 4 C. D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)對(duì)(x,y),設(shè)映射f:(x,y)→( , ),并定義|(x,y)|= ,若|f[f(f(x,y))]|=4,則|(x,y)|的值為(
A.4
B.8
C.16
D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求曲線(xiàn)在點(diǎn)(1,f(1))處的切線(xiàn)方程;

2)求經(jīng)過(guò)點(diǎn)A1,3)的曲線(xiàn)的切線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2(a>0),點(diǎn)A(5,0),P(1,a),若存在點(diǎn)Q(k,f(k))(k>0),要使 =λ( + )(λ為常數(shù)),則k的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的單調(diào)增區(qū)間;
(2)若x∈[0,π]時(shí),f(x)的值域是[5,8],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)調(diào)查,某學(xué)校開(kāi)設(shè)了“街舞”、“圍棋”、“武術(shù)”三個(gè)社團(tuán),三個(gè)社團(tuán)參加的人數(shù)如下表所示:
為調(diào)查社團(tuán)開(kāi)展情況,學(xué)校社團(tuán)管理部采用分層抽樣的方法從中抽取一個(gè)容量為n的樣本,已知從“街舞”社團(tuán)抽取的同學(xué)8人

社團(tuán)

街舞

圍棋

武術(shù)

人數(shù)

320

240

200

(Ⅰ)求n的值和從“圍棋”社團(tuán)抽取的同學(xué)的人數(shù);
(Ⅱ)若從“圍棋”社團(tuán)抽取的同學(xué)中選出2人擔(dān)任該社團(tuán)活動(dòng)監(jiān)督的職務(wù),已知“圍棋”社團(tuán)被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選為監(jiān)督職務(wù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案